CRD-measuring setup

Cavity-Ring-Down-measuring setup for precise measurement of losses at high-reflective coatings

Figure 1: Exemplary conceptual drawing of a four-wavelength measuring setup of the CRD type

Field of application:

- Precise evaluation of losses at high-reflective optical coating layers
- Measurement of losses at plane and slightly concave (|r| > 500 mm) optical components with nominal reflectivities R > 99%
- At R > 99.5%, to a precision of dR/R < 2 ppm.
- Measurement of losses at various, discrete angles of incidence
- Employed laser wavelength(s) selectable on order by the user, according to the desired target wavelength of the coatings (e.g. ≥355 nm ... 532 nm ... 633 nm ... 1064 nm ... ≤1319 nm)

Measurement principle:

- Coupling of a pulsed or fast switched cw laser into a passive resonator cavity
- The coating under measurement is hit on every round-trip → reflective losses
- ullet Highly precise evaluation of the time dependence of the out-coupled signal ightarrow ring-down
- With known round-trip time for a pulse, the ring-down temporal characteristic evaluates the losses *L* per reflection; with the assumption that *R* = 1 *L*, the reflectivity is obtained.

Technical specifications:

· · · · · · · · · · · · · · · · · · ·	
Measurement of reflectivities: Precision:	R » 99% dR/R < 2 ppm for <i>R</i> > 99.5%
Evaluable samples / requirements on the substrate*: *For measurement under 0° a.o.i. Other specifications on request.	Ø 1" or 0.5" (~ 25, 12.5 mm), thickness ~ 6 mm; substrate transparent at employed wavelength; rear side polished, plane
Power supply: laser (may vary according to model): detector:	100 – 240 V AC, 50 Hz 60 Hz +/- 9 V DC
Modules for data acquisition, A-to-D-conversion and data procession	
Interface to PC (Windows, not included): USB 2.0	
Software for evaluation (reflectivity analysis) and data base handling of measurement data (e.g. input of production and measurement parameters, sample-no. etc.)	

This information was compiled by SPECK SENSORSYSTEME GmbH with all due diligence. No liability is assumed for its content. Subject to modifications in the interest of further technical development.

SPECK SENSORSYSTEME GmbH

Entwicklung, Fertigung, Vertrieb von optoelektronischen Sensorsystemen und Komponenten der industriellen Bildverarbeitung

Göschwitzer Str. 32, D-07745 Jena, www.optosensoric.de
Tel.: +49 3641 7735-20//-23, Fax.: +49 3641 7735-26, E-Mail: speck.sensor@arcor.de