

Product overview

ristal Laser, a privately owned, independent business located near Nancy, France, is specialized in crystal growth and processing for applications in non-linear and laser optics. The company, founded in 1990 by a team of researchers and engineers, started the production of KTP crystals at an industrial scale thanks to an exclusive licence granted from CNRS, the French Council for Scientific Research

A long way has been gone since then. Today, Cristal Laser has become one of the major players in its area of business. In 2004, the company moved into brand new, tailor-made premises with enough space for

its staff of 14 technicians and engineers as well as its world class manufacturing equipment. The company is outfitted with more than 50 resistive crystal growing stations, and also state-of-the art cutting, dicing, grinding and polishing machines,

allowing for mass production as well as one-piece manufacturing at the best quality standards. A newly acquired automatic cleaning machine enables Cristal Laser to meet the most stringent cleanliness requirements. A whole set of controlling tools,

including an X-ray g on i ometer, interferometers, microscopes and laser measurement benches, ensures that none of the finished crystals is shipped without a thorough and extensive quality check-up

ristal Laser's production range includes KTP (Potassium Titanyle Phosphate) and other crystals of the same family, such as KTA, RTP and RTA, and also LBO. These crystals are widely used in many applications covering areas from laser surgery, to life sciences, security and defence as well as material processing. Over the years the company gained the confidence of a broad customer base, established in America, Europe and the Far East. Thanks to them, the company achieved a steady and sustainable growth pace over the past years, regardless macroeconomic factors or market conditions in particular business areas

Cristal Laser S.A - Parc d'Activité du Breuil - 32, rue Robert Schumann - F-54850 Messein FRANCE Phone: +33(0)3 83 47 01 01 - Fax: +33(0)3 83 47 22 72 - www.cristal-laser.fr - mail@cristal-laser.fr

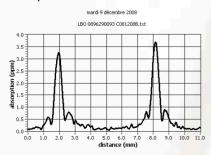
Operation	Advantages	Field of Application
SHG		
• Fundamental range: 1.0-1.3 μm	 Large non-linear coefficient (~3pm/V at 1064/532nm) Small walk-off 	 Low-power CW scientific lasers Surgical lasers (ophtalmology, dermatology) Ti: Sapphire laser pumping
OPO		
 X-cut Signal wavelength: 1.57 μm OPO range: 1.53 - 3.0 μm 	 Monolithic design available: OPO mirrors on the crystals'faces High efficiency Walk-off compensating design available at 2.1 µm 	 Eye-safe instruments (target designators, range finders) ZGP OPO pumping

Optical properties

Average refractive index			1.8		
Coefficients in Sellmeier's equation)	Index	A	В	C	D
F D 1	nx	3.006700	0.039500	0.042510	0.012470
$n_i^2 = A_i + \frac{B_i}{(\lambda^2 - C_i)} - D_i \lambda^2$	ny	3.031900	0.041520	0.045860	0.013370
$(\lambda^2 - C_i)$	nz	3.313400	0.056940	0.059410	0.016713
for $0.5 < \lambda < 3.5 \mu m$	C. Bonnin, C	Cristal Laser		7 11 11	
Temperature coefficients of refractive inc		βпх		3.12 x 10 ⁻⁶	
T 2500 and 0 1 An			Впу		3.6 x 10 ⁻⁶
T= 25°C and $\beta = \frac{1}{n} \frac{\Delta n}{\Delta T}$			β nz		6.24 x 10 ⁻⁶
Transparency range, μm					$0.35 \rightarrow 4.5$
Residual absorption (Photo-thermal Comm	on-nath Interfer	meter): ~50 r	nm/cm at 10	6/nm -1%	cm at 514 nm

Chemical formula		KTiOPO ₄
Crystal structure		Orthorhombic
Point group		mm ²
Lattice parameters, Å	a	12.82
	b	6.40
	С	10.59
Hardness (Mohs)		Near 5
Hygroscopic susceptibility		none
Density, g.cm ⁻³		3.03
Specific heat, cal.g ⁻¹ .°C ⁻¹		0.1737
Ionic conductivity (room temperature, 10 kHz), S.cm ⁻¹		10 -6
Aperture, mm ²		up to 18x18
Length, mm		up to 35

Operation	Advantages	Field of Application
SHG		
 Fundamental range: 0.6-1.3μm 	 Small walk-off 	 High-power scientific CW lasers
 THG at 1.06 μm 	 No grey-track 	 High rep. rate, high average
 FHG at 1.32 μm 	 Non-critical phase match 	power lasers for material
 UV wavelengths achievable: 	at T=150°C for SHG @1064 nm	processing
0.33-0.35 μm	 Very high bulk damage threshold 	 Gas laser replacement


Optical properties

Average refractive index			1.6		
Coefficients in Sellmeier's equation	Index	A	В	С	D
	nx	2.4542	0.01125	0.01135	0.01388
$\left[n_i^2 = A_i + \frac{B_i}{(\lambda^2 - C_i^2)} - D_i \lambda^2\right]$	n _y	2.5390	0.01277	0.01189	0.01848
$\begin{bmatrix} I_{i_1} - A_{i_1} + \frac{1}{(\lambda^2 - C_i^2)} \end{bmatrix} = D_i \lambda $	nz	2.5865	0.01310	0.01223	0.01861
	K. Kato IEEE	J.QE-26, 11	73 (1900)		
Transparency range, μm					0.16-2.6

Physical properties

Chemical formula		LiB ₃ O ₅
Crystal structure		Orthorhombic
Point group		mm ²
Lattice parameters, Å	a	8.44
	b	7.37
	С	5.14
Hardness, Mohs		5.5
Hygroscopic susceptibility		weak
Density, g.cm ⁻³		2.47
Specific heat, J/kg.K		1060
Thermal conductivity, mW.cm ⁻¹ .°C ⁻¹	Tal Y AT	35
Aperture, mm	X PAN SANSAN	up to 30 x 30
Length, mm		up to 50

Absorption at 1064 nm of a 8 mm long LBO crystal

- Measured at Cristal Laser with a Photo-Thermal Common Path interferometer from SPTS
- Residual absorption : <10 ppm/cm at 1064 nm,
 <20 ppm/cm at 532 nm



Operation and Advantages Field of Application

E-O phase modulation

- · Thermally compensated design
- $V_{\pi} = 1600 \text{ V at } 1064 \text{ nm}$ for a 4x4x10 pair
- · No piezoelectric ringing
- · Low operating voltages
- · Fair damage threshold
- Q-switches at high rep. rates or where low operating voltages are needed.
- (e.g. space applications)
- Pulse-picking from a ps or fs pulsetrain

Picture of an E-O Q-switch

Optical properties

Average refractive index				1.8			
Coefficients in Sellmeier's equation	Ai	Bi	Ci	Di	E	рi	Qi
$p_i^2(\lambda) = \lambda_i$ B _i D _i	n _x 2.1982	0.8995	0.2152	1.5433	11.585	1.9727	1.9505
$n_i^2(\lambda) = A_i + \frac{B_i}{1 - \left(\frac{C_i}{\lambda}\right)^{p_i}} + \frac{D_i}{1 - \left(\frac{E_i}{\lambda}\right)^{q_i}}$	ny 2.2804	0.8459	0.2296	1.1009	9.660	1.9696	1.9369
	nz 2.3412	1.0609	0.2646	0.9714	8.149	2.0585	2.0038
for $0.5 < \lambda < 3.5 \mu m$	Y. Guillien et	al., Opti	cal Mater	ials 22 (20	03) 155-1	62	
Transparency ra <mark>nge, μm</mark>						0	.35-4.5
Transparency ra <mark>nge, μm</mark> Residual absorption (Photo-thermal Co	mmon-path In	terferome	eter): 100	ppm/cm a	nt 1064nm		
	· ·	terferome	eter) : 100	ppm/cm a	at 1064nm 33	, 1%/cm a	
Residual absorption (Photo-thermal Co	· ·	terferome	eter) : 100	•	33	, 1%/cm a	
Residual absorption (Photo-thermal Co	· ·	terferome	eter) : 100	r 33	33 10	, 1%/cm a 3.0	

Chemical formula		RbTiOPO4
Crystal structure	And the last of th	Orthorhombic
Point group	1	mm²
Lattice parameters, Å	a	12.96
Annual Control of the	b	10.56
The second secon	С	6.49
Hygroscopic susceptibility	1000	None
Density, g.cm ⁻³	7000	3.6
Ionic conductivity (room temperature), S.cm-1	1000	10 ⁻¹⁰ to 10 ⁻⁹
Aperture mm ²	100	up to 9x9
Length mm	700	up to 10

Operation	Advantages	Field of Application
 THG at 1.06μm 	 Fair efficiency 	 UV lasers for material processing
 4HG at 1.06 μm 	 Best commercialy available 	 Gas laser replacement
 5HG at 1.06 μm 	crystal for 4HG and 5HG	
 OPO pumped at 532 nm 	 Widely tunable 	
or 355 nm	 High conversion efficiency 	
 E-O phase modulation 	 Excellent extinction ratio 	 Q-switches at high rep. rates or
	 Wide transmission range 	where high damage threshold is
	 High damage threshold 	needed

Optical properties

Average refractive index			1.6		
Coefficients in Sellmeier's equation	Index	А	В	C	D
	no	2.7359	0.01878	0.01822	0.01354
Bi Daz	ne	2.3753	0.01224	0.01667	0.01516
$n_i^2 = A_i + \frac{B_i}{(\lambda^2 - C_i^2)} - D_i \lambda^2$	Negati	ve uniaxial cr	ystal with no	>ne	
	K. Kato IEEE	J.QE-22, 10	13 (1986)	- 3	
Transparency range, µm				1.6	0.2-2.2
Residual absorption				< 0.1% / cn	n at 1064 nm

	β-BaB ₂ O ₄
	Trigonal
	3m
a	12.53
b	12.53
С	12.72
	4
	High
	3.85
	490
7/2 Th. 1/2	1.2(<u>L</u> c) 1.6(//c)
	up to 13 x 13
	up to 20
	b

Operation	Advantages	Field of Application
OPO		
 X-cut Signal wavelength: 	 High efficiency 	 Eye-safe instruments (target
1.54μm	 Small walk-off 	designators, range finders) with
 OPO range : 1.51-3.5 μm 	 High transmission in the 	mid-high average powers
	3-3.5 µm range	 Spectroscopy, gas detection

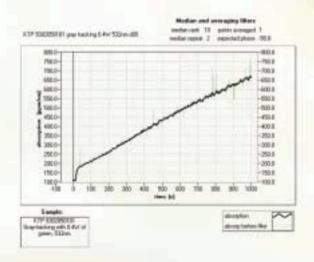
Optical properties

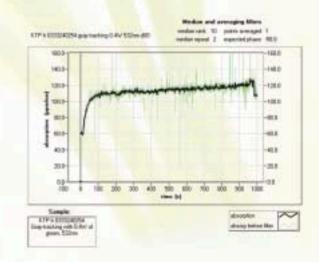
Average refractive index			1.8		
Coefficients in Sellmeier's equation	Index	A	В	C	D
F D32	nx	1.90713	1.23522	0.19692	0.01025
$n_i^2 = A_i + \frac{B_i \lambda^2}{(\lambda^2 - C_i^2)} - D_i \lambda^2$	ny	2.15912	1.00099	0.21844	0.01096
- (λ²-Ui)	nz	2.14786	1.29559	0.22719	0.01436
for $0.4 < \lambda < 4 \mu m$	Fenimore, S	chepler, Rama	adabran, McF	Pherson,	
	J. Opt. Soc.	Am. B Vol 12	2(5) 1995		
Transparency range, μm					0.35-5.3
Residual absorption (Photo-thermal Common-path Interferometer): 200 ppm/cm at 1064 nm					

Chemical formula		KTiOAsO4
Crystal structure	17/A	Orthorhombic
Point group		mm ²
Lattice parameters, Å	а	13.12
	b	6.56
	С	10.79
Hardness (Mohs)		5.5
Hygroscopic susceptibility		none
Density, g.cm ⁻³		3.45
lonic conductivity (room temperature, 10 kHz), S.cm ⁻¹	A A A SHOWN	10-6
Aperture, mm ²		up to 10x10
Length, mm		up to 20

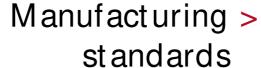
Operation	Advantages	Field of Application
SHG		
 Fundamental range : 1.0-1.3 μm 	No gray-trackLarge non-linear coefficient	 Mid-power CW lasers (up to a few Watts at 532 nm) for
	(-3pm/Vat 1064/532 nm)	scientific or medical applications.
	 Small walk-off 	 Extracavity SHG of KHz lasers
		(materials processing)

Optical properties - same as KTP


Physical properties


Ionic conductivity, (room temperature), S. cm-1	10 ⁻¹¹ to 10 ⁻¹⁰
Aperture, mm ²	up to 10 x 10
Length, mm	up to 10

According to KTP users, gray-track formation can cause harmonic power instability for many intracavity frequency-doubled CW lasers, and reduced conversion efficiency and crystal blackening in case of high power, high repetition rate Q-switched lasers. Sometimes the process is accompanied by beam distortion when the beam is tightly focused in the crystal.


The occurrence of gray-track in a KTP crystal can be measured by an increase of bulk absorption at 1064 nm induced by a strong CW green radiation at 532 nm (10 kW/cm²). This measurement was performed with the Photo-thermal Common-path Interferometer, a device developed at Stanford University, USA. The two graphs below show the difference between a standard KTP crystal and a grey-track full-resistant KTP: fr crystal, both produced at Cristal Laser.

Whereas the measured absorption sharply and steadily increases in the standard KTP as soon as the green laser is switched on, it rises and then quickly stabilizes in case of the KTP.fr, thus showing gray-track inhibition.

Facilities / Equipement

Tools	Controls	
 SECASI X-ray goniometer 	Binocular and DIC-microscopy	
 Meyer & Burger slicing machine 	 Interferometers 	
 Meyer & Burger dicing machine 	 Shadowgraph 	
 SOMOS grinding machines 	 Laser test benches for non-linear efficiency check-up 	
 SOMOS polishing machines 	 Laser benches for custom requirements 	
 Ultrasonic cleaning machine 	 Photo-thermal Common-Path Interferometer for absorption 	
measurements		

Specifications

Materials processed: laser crystals, glas	s, and non-linear crystals with typical aperture up to 10 x 10 mm ²
and length up to 30 mm	
Aperture cut	tolerance +/-0.1 mm
Length	tolerance +0.3/-0.2 mm
Parallelism	better than 20"
Perpendicularity	better than: 30' (standard), 10' on request
Flatness (λ=633 nm) within a 80 % circular clear aperture	better than λ/10
Orientation	+/-0.5° (standard), +/-0.1° on request
Roughness	better than 10 Å RMS
Scratch/dig	10-5
Wavefront distortion ($\lambda = 633 \text{ nm}$)	better than $\lambda/4$ for less than 30 mm single pass length
For custom requirements please contact	et us

Thin film coatings

Technologies available	e-beam, IAD, IBS
Damage threshold	500 MW/cm ² AR-coated,
	10J/cm ² at 10 Hz, 10 ns, 200 shots S on 1, beam size
	at 1/e ² 500 μm
AR coatings	better than 0.1% (0.05% on request)
e.g. for 1064/532 frequency-doublers	at 1064 nm, 0.5% at 532 nm

www.cristal-laser.fr

Cristal Laser S.A

Parc d'Activité du Breuil 32, rue Robert Schumann F-54850 Messein FRANCE Phone: +33(0)3 83 47 01 01 Fax: +33(0)3 83 47 22 72

www.cristal-laser.fr / mail@cristal-laser.fr