

Balanced Optical Microwave Phase Detector (BOMPD)

APPLICATION

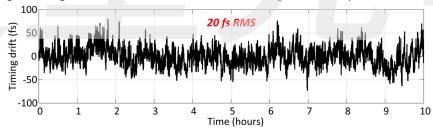
- Tight synchronization between ultrafast lasers to microwave signals
- Tight synchronization between microwave signals to ultrafast lasers
- Tight synchronization of microwave sources to the output of stabilized fiber links
- Generation of ultra-low-noise microwave signals from an ultrafast optical oscillator
- Tight synchronization of ultrafast lasers to electron bunches in an accelerator, when used together with a bunch arrival monitor (BAM)

DESCRIPTION

The fully-automated BOMPD precisely detects the time delay between an optical pulse train, and the zero-crossings of a microwave signal. It generates a baseband signal that is proportional to the timing error between the two inputs, which in turn can be used in a phase locked loop configuration to tightly synchronize a laser to a microwave source or vice versa. Due to its balanced detection scheme, the BOMPD is immune to amplitude fluctuations of both optical and microwave sources and greatly suppresses the AM-PM conversion noise in the photodetection process. Cycle offers two additions to the BOMPD to complement our customers' applications: RF generation option (which includes a Voltage-Controlled Oscillator for generating an RF signal based on an optical clock), lownoise option (down to 5 fs synchronization). Standard optical wavelengths are 800 nm, 1030 nm, and 1550 nm. Please contact one of our timing experts for your customization needs.

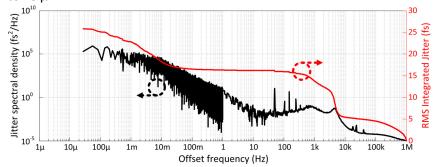
SPECIFICATIONS

ВОМРО				
Parameter	Value	Unit	Comment	
Detector sensitivity	> 0.05	mV / fs	At the detector output (not amplified)	
Detector resolution	< 0.5	fs	Integrated detector noise floor within 10 kHz bandwidth	
Control system	included		Available in Epics, Tango	
Auto lock	included			
Dimensions			Rack mountable, 19 inch width, 5HU	
Weight	10-20	kg	Depending on options	



Requirements					
RF input power	>15	dBm	Up to 10 GHz. BOMPD tailored to frequency of interest		
Optical input	800 ± 30	nm	Operating at pulsed mode		
wavelength	1550 ± 40				
Optical input power	> 50*	mW	* Required average power for 800nm version		
	> 20**		** Required average power for 1550nm version		
Optical input type	PM Fiber		FC or SC connector		
Pulse repetition rate	< 10	GHz	BOMPD is tailored for the repetition rate of interest		
RF Generation Option for BOMPD					
VCO	Included		Customizable upon request		
Integrated feedback	Included		Optimized PID parameters		
Timing Jitter	< 30 ¹	fs RMS	Within 35 μHz - 1 MHz bandwidth; relative to the		
			master oscillator		
RF output frequency	< 10	GHz	Can be tailored for the frequency of interest		
Locking bandwidth	> 10	kHz	Between the optical master and RF slave oscillator		
RF output power	> 10	dBm	50 Ω impedance		
RF power stability	< 0.1	%			
Low Noise Option for BOMPD					
VCO	Included				
Timing Jitter	< 5	fs RMS	Within 35 μHz - 1 MHz bandwidth; relative to the		
			master oscillator		

¹when operated in an environment with maximum 0.1 K temperature and 2 % relative humidity fluctuations. Higher precision is available upon request.


MEASUREMENT DATA

Out-of-loop timing drift below 1 Hz between a remotely synchronized ultrafast laser and a microwave signal² using a standard 1550nm BOMPD, with RF generation option:

²when operated in an environment with maximum 0.1 K temperature and 2 % relative humidity fluctuations.

Out-of-loop timing jitter spectral density between the generated RF and the optical reference, from 1 MHz down to 28 μ Hz 3 :

³The spectrum below 1 Hz is the Fourier transformation of the timing drift data, whereas the spectrum above 1 Hz is measured with a baseband analyzer.