
BOATM Pulse Compressor Specifications (UV WAVELENGTHS)

Pulse compressor model:	BOA-200	BOA-260	BOA-350	BOA-400		
Wavelength range:	175 - 225 nm	250 - 350 nm	300 - 450 nm	350 - 500 nm		
Max neg. GDD @ center wavelength ¹ :	-35,000 fs ²	-36,000 fs ²	-12,000 fs ²	-22,000 fs ²		
Transmission ² @ shortest wavelength:	> 55%	> 65%	> 65%	> 65%		
@ center wavelength:	> 50%	> 60%	> 60%	> 60%		
Max bandwidth @ maximum GDD ³ :	7 nm	12 nm	30 nm	23 nm		
@ half-maximum GDD :	12 nm	20 nm	50 nm	40 nm		
Maximum peak power:	500 MW					
Total additional beam path:	< 1.5 m					
Pulse repetition rate:	Any					
Angular dispersion (dθ/dλ) added:	0					
Pulse-front tilt (dt/dx) added:	0					
Spatial chirp (dx/dλ) added:	0					
1D beam magnification:	1					
Output/input beam collinearity:	< 10 mrad					
Required input polarization:	Horizontal					
Polarization rotation:	<0.1°					
Required input-beam diameter:	1 – 4 mm (collimated)					
Input-beam lateral-displ. tolerance:	1 mm					
Number of alignment knobs:	Zero					
Time to set up:	~ 10 minutes					
Dimensions (L x W x H):	46 cm x 13.5 cm x 16 cm					
Weight:	~ 10 kg					

¹⁻ Center wavelength in nanometers is the number following the "BOA-" in the device model. Wavelength-dependent data for the full operation range is given in the following pages.

ADDITIONAL NOTES

- The added angular dispersion, pulse-front tilt, and spatial chirp can be shown to always be identically zero and were all immeasurable in our experiments.
- If your beam is larger than 4 mm, please let us know, and we can easily design a pulse compressor with a larger aperture at no extra cost.
- Alignment of the pulse compressor into a beam is achieved using a simple trick: backreflection off a removable glass window (provided) is used to make sure the beam is incident perpendicularly to the compressoraxis. Once you do this, simply remove the window. You are all set to compress your pulses.
- The pulse compressor itself is auto-aligning, so no alignment knobs are required for internal components.
- Motorized and computer-controlled versions are available upon request.

Layout for the BOA single-prism pulse compressor

上海昊量光电设备有限公司

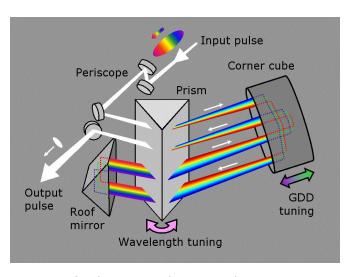
中国区代理

官网: www.auniontech.com 电话: 021-34241961

ew新: info@auniontech.com E-mail: info@auniontech. 地址: 上海市徐汇区漕宝路 86 号光大会展中心 F 座 3 楼

²⁻ The overall transmission depends on polarization purity and beam divergence. The indicated numbers are typical, experimentally obtainable values, not theoretical estimates.

³⁻ As with all dispersive pulse compressors, the maximum bandwidth is limited by beam clipping on the second pass through the prism and so depends on the prism-corner-cube separation (and hence the device's maximum negative GDD). A unique advantage of the BOA single-prism/corner-cube design, which tunes GDD by varying this separation, however, is that, if less than the full negative GDD is needed, the beam path will be shorter, and, as a result, the compressor can accommodate a pulse with a larger bandwidth.


BOATM Pulse Compressor Specifications (Vis. WAVELENGTHS)

Pulse compressor model:	BOA-530	BOA-600	BOA-700			
Wavelength range:	450 nm - 600 nm	500 nm - 700 nm	600 nm - 900 nm			
Max neg. GDD @ center wavelength ¹ :	-70,000 fs ²	-40,000 fs ²	-65,000 fs ²			
Transmission ² @ shortest wavelength:	> 95%	> 95%	> 95%			
@ center wavelength:	> 80%	> 80%	> 80%			
Max bandwidth @ maximum GDD ³ :	16 nm	28 nm	25 nm			
@ half-maximum GDD :	30 nm	50 nm	50 nm			
Maximum peak power:	500 MW					
Total additional beam path:	< 1.5 m					
Pulse repetition rate:	Any					
Angular dispersion ($d\theta/d\lambda$) added:	0					
Pulse-front tilt (dt/dx) added:	0					
Spatial chirp (dx/dλ) added:	0					
1D beam magnification:	1					
Output/input beam collinearity:	< 10 mrad					
Required input polarization:	Horizontal					
Polarization rotation:	<0.1°					
Required input-beam diameter:	1 – 4 mm (collimated)					
Input-beam lateral-displ. tolerance:	1 mm					
Number of alignment knobs:	Zero					
Time to set up:	~ 10 minutes					
Dimensions (L x W x H):	46 cm x 13.5 cm x 16 cm					
Weight:	~ 10 kg					

¹⁻ Center wavelength in nanometers is the number following the "BOA-" in the device model. Wavelength-dependent data for the full operation range is given in the following pages.

ADDITIONAL NOTES

- The added angular dispersion, pulse-front tilt, and spatial chirp can be shown to always be identically zero and were all immeasurable in our experiments.
- If your beam is larger than 4 mm, please let us know, and we can easily design a pulse compressor with a larger aperture at no extra cost.
- Alignment of the pulse compressor into a beam is achieved using a simple trick: backreflection off a removable glass window (provided) is used to make sure the beam is incident perpendicularly to the compressoraxis. Once you do this, simply remove the window. You are all set to compress your pulses.
- The pulse compressor itself is auto-aligning, so no alignment knobs are required for internal components.
- Motorized and computer-controlled versions are available upon request.

Layout for the BOA single-prism pulse compressor

上海昊量光电设备有限公司

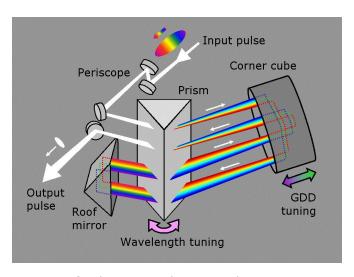
中国区代理

官网: www.auniontech.com 电话: 021-34241961

Weller: info@auniontech.com E-mail: info@auniontech.com 地址: 上海市徐汇区漕宝路 86 号光大会展中心 F 座 3 楼

²⁻ The overall transmission depends on polarization purity and beam divergence. The indicated numbers are typical, experimentally obtainable values, not theoretical estimates.

³⁻ As with all dispersive pulse compressors, the maximum bandwidth is limited by beam clipping on the second pass through the prism and so depends on the prism-corner-cube separation (and hence the device's maximum negative GDD). A unique advantage of the BOA single-prism/corner-cube design, which tunes GDD by varying this separation, however, is that, if less than the full negative GDD is needed, the beam path will be shorter, and, as a result, the compressor can accommodate a pulse with a larger bandwidth.


BOATM Pulse Compressor Specifications (IR WAVELENGTHS)

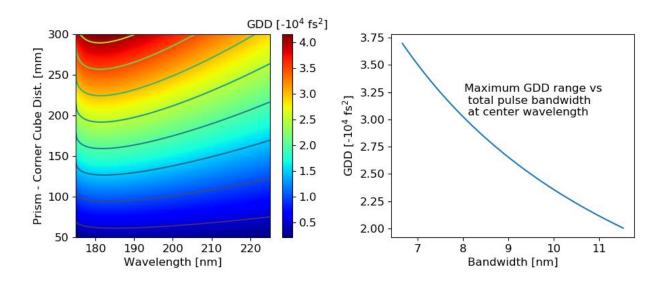
Pulse compressor model:	BOA-800	BOA-1050	BOA-1300	BOA-1550	
Wavelength range:	700 - 1100 nm	900 - 1200 nm	1200 - 1450 nm	1400 - 1700 nm	
Max neg. GDD @ center wavelength ¹ :	-38,000 fs ²	-14,000 fs ²	-44,000 fs ²	-20,000 fs ²	
Transmission ² @ shortest wavelength:	> 80%	> 80%	> 80%	> 80%	
@ center wavelength:	> 70%	> 70%	> 70%	> 70%	
Max bandwidth @ maximum GDD ³ :	40 nm	110 nm	65 nm	120 nm	
@ half-maximum GDD :	70 nm	190 nm	110 nm	200 nm	
Maximum peak power:	500 MW				
Total additional beam path:	< 1.5 m				
Pulse repetition rate:	Any				
Angular dispersion ($d\theta/d\lambda$) added:	0				
Pulse-front tilt (dt/dx) added:	0				
Spatial chirp (dx/dλ) added:	0				
1D beam magnification:	1				
Output/input beam collinearity:	< 10 mrad				
Required input polarization:	Horizontal				
Polarization rotation:	<0.1°				
Required input-beam diameter:	1 – 4 mm (collimated)				
Input-beam lateral-displ. tolerance:	1 mm				
Number of alignment knobs:	Zero				
Time to set up:	~ 10 minutes				
Dimensions (L x W x H):	46 cm x 13.5 cm x 16 cm				
Weight:	~ 10 kg				

¹⁻ Center wavelength in nanometers is the number following the "BOA-" in the device model. Wavelength-dependent data for the full operation range is given in the following pages.

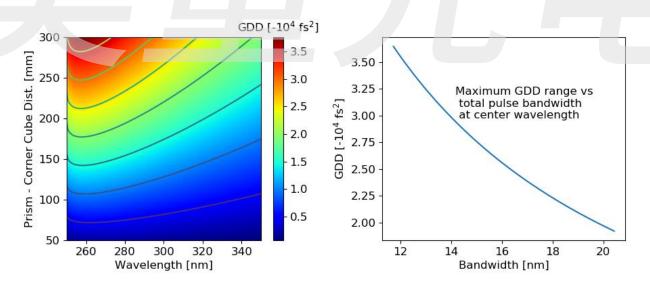
ADDITIONAL NOTES

- The added angular dispersion, pulse-front tilt, and spatial chirp can be shown to always be identically zero and were all immeasurable in our experiments.
- If your beam is larger than 4 mm, please let us know, and we can easily design a pulse compressor with a larger aperture at no extra cost.
- Alignment of the pulse compressor into a beam is achieved using a simple trick: backreflection off a removable glass window (provided) is used to make sure the beam is incident perpendicularly to the compressoraxis. Once you do this, simply remove the window. You are all set to compress your pulses.
- The pulse compressor itself is auto-aligning, so no alignment knobs are required for internal components.
- Motorized and computer-controlled versions are available upon request.

Layout for the BOA single-prism pulse compressor

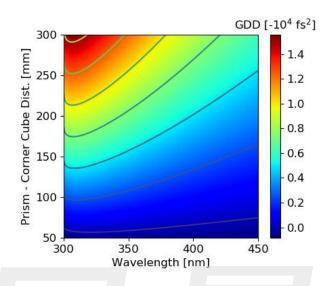

上海昊量光电设备有限公司

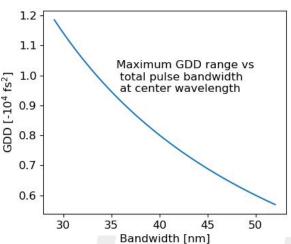
中国区代理


官网: www.auniontech.com 电话: 021-34241961

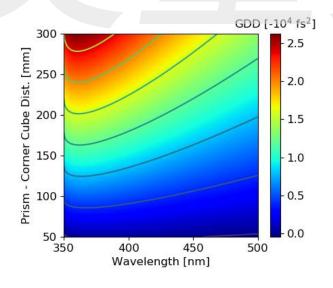
²⁻ The overall transmission depends on polarization purity and beam divergence. The indicated numbers are typical, experimentally obtainable values, not theoretical estimates.

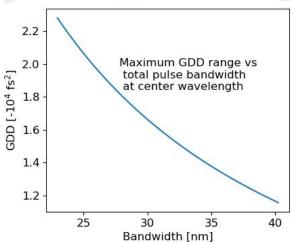
³⁻ As with all dispersive pulse compressors, the maximum bandwidth is limited by beam clipping on the second pass through the prism and so depends on the prism-corner-cube separation (and hence the device's maximum negative GDD). A unique advantage of the BOA single-prism/corner-cube design, which tunes GDD by varying this separation, however, is that, if less than the full negative GDD is needed, the beam path will be shorter, and, as a result, the compressor can accommodate a pulse with a larger bandwidth.


Single Prism Pulse Compressor, BOA-266

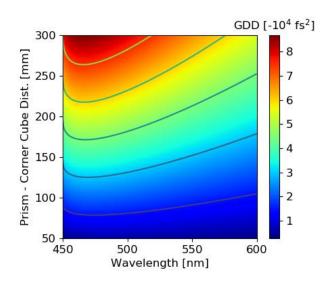


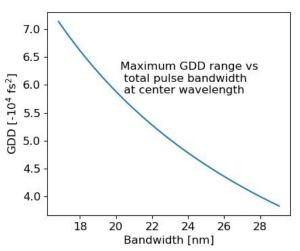
上海昊量光电设备有限公司


中国区代理

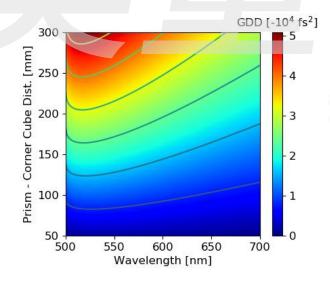

官网: www.auniontech.com 电话: 021-34241961

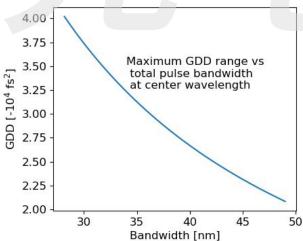
Single Prism Pulse Compressor, BOA-400

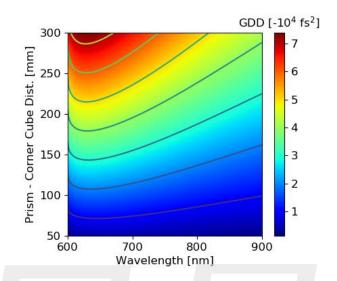


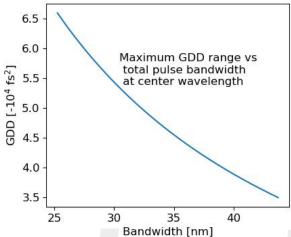

上海昊量光电设备有限公司

中国区代理


官网: www.auniontech.com 电话: 021-34241961

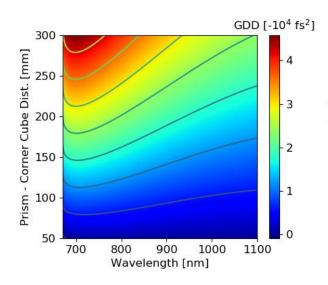

/e<mark>邮籍e: iMfA@aumiontesh.69M</mark> E-mail: info@auniontech<mark>.c</mark>or 地址: 上海市徐汇区漕宝路 86 号光大会展中心 F 座 3 楼

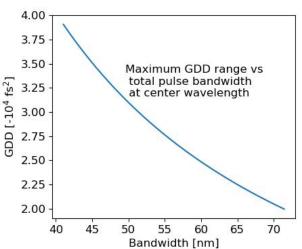

Single Prism Pulse Compressor, BOA-600



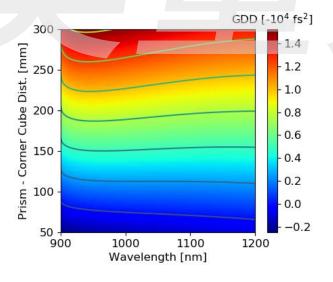
上海昊量光电设备有限公司

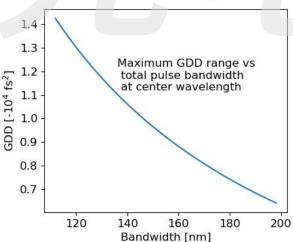
中国区代理



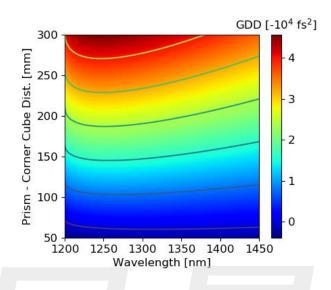

上海昊量光电设备有限公司

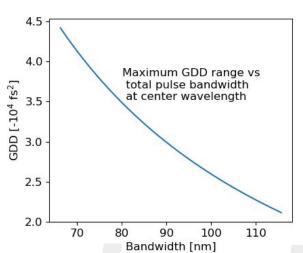
中国区代理


官网: www.auniontech.com 电话: 021-34241961

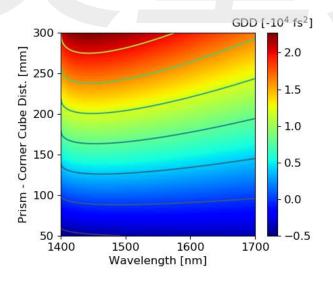

e<mark>帆箱: www.@auniantech.com</mark> E-mail: info@auniontech.com 地址:上海市徐汇区漕宝路 86 号光大会展中心 F 座 3 楼

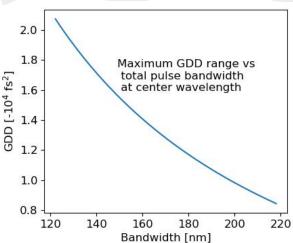
Single Prism Pulse Compressor, BOA-1050





上海昊量光电设备有限公司


中国区代理


官网: www.auniontech.com 电话: 021-34241961

Single Prism Pulse Compressor, BOA-1550

上海昊量光电设备有限公司

中国区代理

官网:www.auniontech.com 电话:021-34241961 /伽緬:info@auniontech.com E-mail:info@auniontech.com 地址:上海市徐汇区漕宝路 86 号光大会展中心 F 座 3 楼