E-Mail: info@auniontech.com Website: www.auniontech.com

DR-PL-20-MO

Pulse Medium Output Voltage Driver Module

DRIVER

FEATURES

- · Specific desi n for pulse signals
- · Accommodate a variety of pulse formats
- · High pulse fideli y

APPLICATIONS

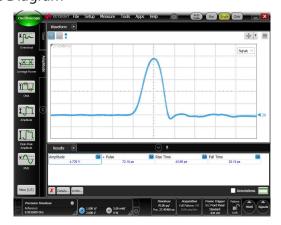
- Pulse generation
- Pulse picking
 - Spectroscopy
 - Lidar

OPTIONS

Heat-sink

The DR-PL-20-MO RF drivers are amplifiers module designed to drive LiNbO₃ optical modulators so as to generate undistorted optical pulses.

Electrical pulsed signals differ from classical telecom signals by long periods with no signal, when telecom signals are usually well balanced in 1 and 0. They also differ from analog signal by a wider frequency content. In order to generate clean optical pulses with sharp edges, sustained high and low levels and no overshoot, pulsed signals do require specific amplifie.


The DR-PL-20-MO driver is optimized for low and high Pulse Repetition Frequency (PRF) signals from 10 Hz to 1 GHz. The bandwidth up to 20 GHz accommodates 50 ps narrow pulse width with short rise and fall time (down to 30 ps) and can withstand longer pulses up to 10 ns.

The DR-PL-20-MO drivers come in compact connectorized modules that match directly with iXblue modulators, they use a single voltage power supply for ease and safety of use and feature an output voltage control for maximum fl xibility. An optional heat-sink is proposed as an accessory.

Performance Highlights

Parameter	Min	Тур	Max	Unit
Cut-off f equencies	45 k	<u>-</u>	18 G	Hz
Output pulse amplitude	-	-	5.2	V _{pp}
Gain	28	30	-	dB
Pulse repetition frequency	10	-	1 G	Hz
Pulse width	60 p	-	10 n	S
Rise / Fall time	-	20	35	ps

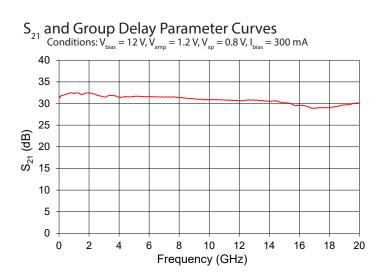
Electrical Pulse Diagram

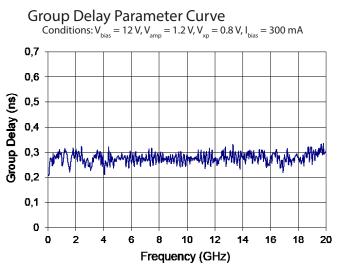
DC Electrical Characteristics

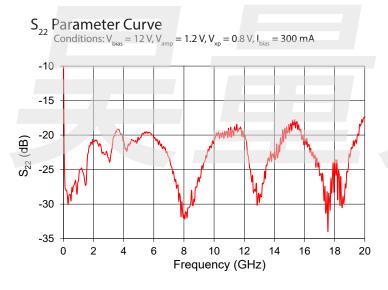
Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage (fi ed)	V _{bias}	-	12	-	V
Supply current	l _{bias}	-	320	400	mA
Output amplitude control voltage	V_{amp}	0	-	1.2	V
Output pulse adjustment voltage	V _{xp}	0	0.8	1.1	V

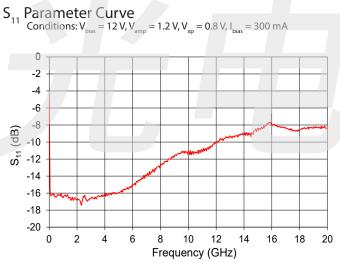
Electrical Characteristics

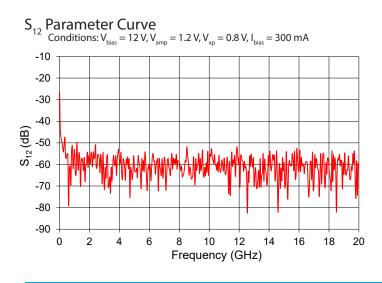
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Lower frequency	f _{3dB} , lower	-3 dB point	45	50	-	kHz
Upper frequency	f _{3dB} , upper	-3 dB point	18	20	-	GHz
Gain	S ₂₁	Small signal, P _{in} = -30 dBm	28	30	-	dB
Gain ripple	-	< 17 GHz	-	±1.5	-	dB
Input return loss	S ₁₁	50 kHz < f < 12 GHz	-	-	-10	dB
Output return loss	S ₂₂	50 kHz < f < 20 GHz	-	-	-10	dB
Output pulse amplitude	V _{out}	$V_{in} = 250 \text{ mV}_{pp}$, by V_{amp} adjustment	1.5	4.5	5.2	V _{pp}
Sat output pulse amplitude	V _{out}	$V_{in} = 500 \text{ mV}_{pp}$	-	-	5.4	V _{pp}
Pulse repetition frequency	PRF	Duty-cycle < 0.1 %	10	_	1 G	Hz
Pulse width	PW	10 Hz < PRF < 1 GHz	60 p	-	10 n	S
Rise / Fall time	t _R /t _F	20 % - 80 %	-	20	35	ps
Power dissipation	Р	-	-	3.8	5.2	W

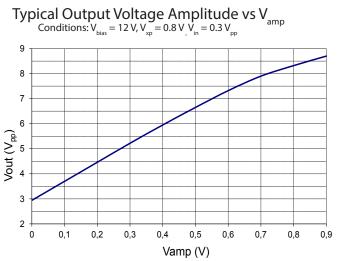

Conditions: S parameters -30 dBm, $T_{amb} = 25$ °C, 50 Ω system

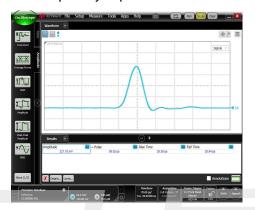

Absolute Maximum Ratings

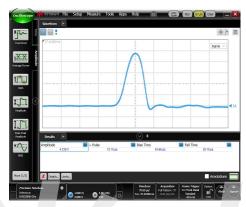

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.


Parameter	Symbol	Min	Max	Unit
RF input voltage	V _{in}	-	0.5	V _{pp}
Supply Voltage	V _{bias}	-	13	V
DC current	bias	-	0.400	Α
Pulse amplitude control	V _{amp}	0	1.2	V
Pulse adjustment control	V _{xp}	0	1.1	V
Power dissipation	P _{diss}	-	5.2	W
Temperature of operation	T _{op}	-5	+40	°C
Storage temperature	T _{st}	-20	+70	°C



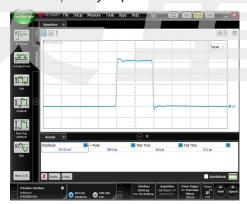





Pulses Measurements

The input electrical signal is generated by Anritsu MP1800A. Input and output signals measured using Keysight 86100D.

Low frequency repetition rate with a short pulse width of PW = 60 ps

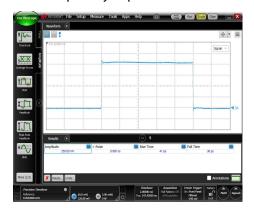


Input signal: Pulse amplitude = $0.22 V_{pp'}$ Rise time = 24 ps



Output response: Pulse amplitude = $4.7 V_{pp}$ Rise time = 32 ps

Low frequency repetition rate with a short pulse width of PW = 1 ns

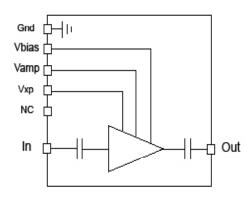


Input signal: Pulse amplitude = $0.25 V_{pp'}$ Rise time = 32 ps

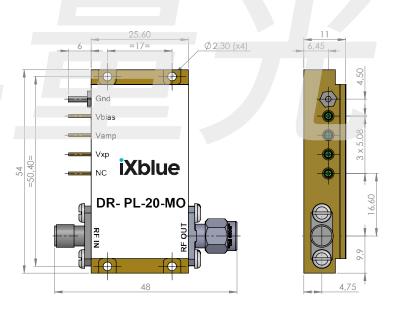


Output response: Pulse amplitude = $5 V_{pp'}$ Rise time = 32 ps

Low frequency repetition rate with a pulse width of PW = 10 ns


Input signal: Pulse amplitude = $0.25 V_{pp'}$ Rise time = 32 ps

Output response: Pulse amplitude = $4.8 V_{pp'}$ Rise time = 32 ps

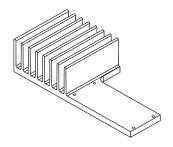


Electrical Schematic Diagram

Mechanical Diagram and Pinout

All measurements in mm

The heat-sinking of the module is necessary. It's user responsability to use an adequate heat-sink. Refer to page 6 for iXblue recommended heat-sink.


PIN	Function	Unit		
IN	RF In	K connector female		
OUT	RF Out	K connector male		
V _{bias}	Power supply voltage	Set a typical operating specific tion		
V_{amp}	Output voltage amplitude adjustment	Adjust for gain control tuning		
V _{xp}	Output pulse adjustment	Adjust for pulse adjustment (amplitude and width) tuning		

Driver

Mechanical Diagram And Pinout With HS-MO2 Heat-sink

All measurements in mm

About us

iXblue Photonics produces specialty optical fibers and Bragg gratings based fiber optics components and provides optical modulation solutions based on the company lithium niobate (LiNbO₃) modulators and RF electronic modules.

iXblue Photonics serves a wide range of industries: sensing and instruments, defense, telecommunications, space and fiber lasers as well as research laboratories all over the world.

3, rue Sophie Germain 25 000 Besançon - FRANCE Tel.: +33 (0)1 30 08 87 43 iXblue reserves the right to change, at any time and without notice, the specific tions, design, function or form of its products described herein. All statements, specific tion, technical information related to the products herein are given in good faith and based upon information believed to be reliable and accurate at the moment of printing. However the accuracy and completeness thereof is not guaranteed. No liability is assumed for any inaccuracies and as a result of use of the products. The user must validate all parameters for each application before use and he assumes all risks in connection with the use of the products