T-Spin1 Ultrabroadband Terahertz Emitter

AUNION TECH 吴量光电

Overview

The spintronic terahertz (THz) emitter is based on an optimized metallic thin-film stack that includes spintronic materials. Upon illumination by a femtosecond pump pulse, a terahertz pulse is generated. The THz band-width covers frequencies from 0.1 up to 30 THz without any spectral gaps¹. The emitter is fully passive including an integrated magnet design that allows easy and full control over the linear terahertz polarization.

T-Spin1

Key Benefits

- Ultrabroadband THz generation without spectral gaps
- High THz-generation efficiency
- Fully passive operation
- **Integrated magnet** that allows full and easy 360° control of the linear THz polarization
- Long term stability
- Compatible with many optical setups
- THz beam parameters are inherited from the pump beam
- High efficiency for **many pump wavelengths** from the mid-infrared to X-rays
- **Reflection and transmission** geometry possible: A THz pulse is emitted in forward and backward direction simultaneously
- Collinearity of pump and THz beam allow for easy implementation and straightforward alignment of your THz spectrometer

Applications

- Ultrabroadband linear THz spectroscopy
- Upscaling enables nonlinear THz spectroscopy
- THz near-field microscopy
- THz scanning tunneling microscopy
- X-ray beam tomography
- Ultrafast photodetector (THz pulse determined by pump pulse envelope)

¹ The actual terahertz band-width depends on the pump pulse duration and may vary depending on specific experimental conditions.

T-Spin1

Ultrabroadband Terahertz Emitter

Aunion Tech Co.,Ltd

Floor 3, F Building, No. 86 Caobao road, Shanghai 200235 P.R. China Tel: +86-21-51083793 Fax:+86-21-34241962 E-Mail: info@auniontech.com Website: www.auniontech.com

Technical Data

T-Spin1	
THz band-width ^{1,2,3}	0.1 – 30 THz @ 15 fs pump pulse duration
THz electric-field strength ^{2,3}	100 V/cm
Ideal excitation conditions	Focused pump beam (≤ 1 mm)
Max. excitation fluence ³	0.5 mJ/cm ²
Rotation mount	M4 thread at the bottom (post not included), identical to <u>RSP05/M</u> from <i>Thorlabs, Inc.</i>
Magnet	Outer diameter 12.7 mm, inner diameter 6.35 mm, thickness 6.35 mm
Spintronic THz emitter	Diameter 12.7 mm, thickness 0.5 mm

Exemplary Measurement Data^{1,2,3}

T-Spin spectral amplitude at the detector

THz transmission spectrum through 8 µm Teflon

¹ The actual terahertz band-width depends on the pump pulse duration and may vary depending on specific experimental conditions. The THz band width approximately scales inversely proprotional to the pump pulse duration. ² Obtained with 15 fs pump pulses centered at a wavelength of 785 nm, 80 MHz repetition rate, 80 mW excitation power, about 0.5 mJ/cm² excitation fluence.

³Typical values only. Actual values may vary depending on specific experimental conditions.