

LD-1310-COMB-8

Fiber coupled Comb Laser Diode @ 1310 nm

Features:

- Single chip InAs/GaAs Quantum Dot based diode laser
- Standard communication wavelength: O-band
- Minimum 8 low RIN individual Fabry-Perot modes
- Equidistant temperature insensitive channel spacing
- Spliced optical Isolator
- Polarization Maintaining fiber

Applications:

Multi-channel source for DWDM communications

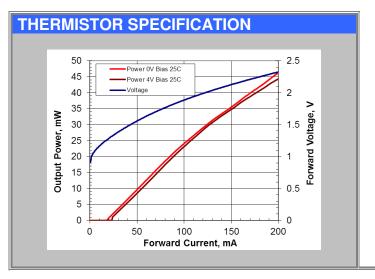
Description:

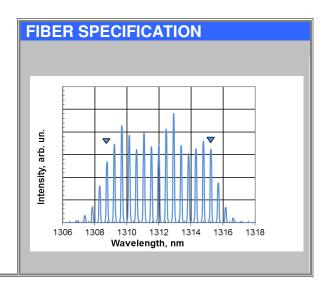
Quantum Dot based diode laser operating as an optical frequency comb generator. Device provides several low noise 80GHz spaced optical modes at about 1310nm. Packaged in convenient 14-pin butterfly housing the device is dedicated for the development and evaluation of novel optical interconnects based on WDM technology.

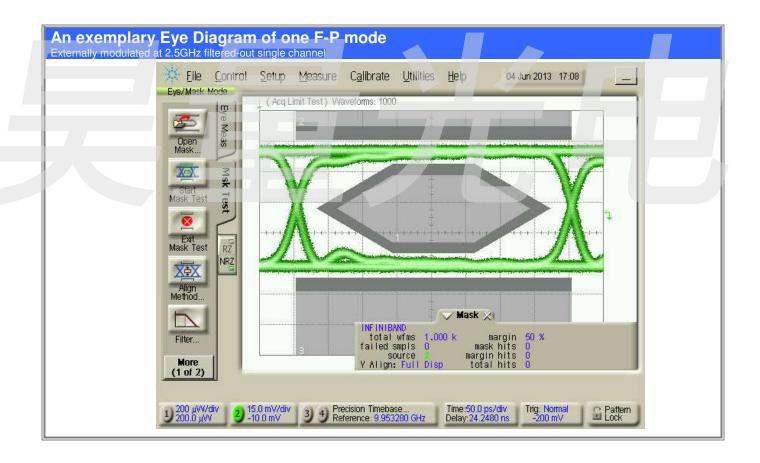
Specification

SPECIFICATIONS Test conditions: CW operation at 25°C					
Parameters	Symb.	Min.	Typ.	Max.	Unit
Total Output power	Pout	25	30		mW
Central wavelength ¹	λ _c	1300	1 310	1320	nm
Optical Power per channel			2		mW
Number of channels (<-3dB difference)		8	12		
Channel spacing ²		78	80	82	GHz
Individual FP mode (channel) RIN (averaged in 0.1-8GHz range)				-125	dB/Hz
Laser Diode power conversion efficiency (Pout/ Iop / Vf)	WPE	9			%
LD Threshold current	I _{th}		20	30	mA
LD Operating current	I _{op}		160	180	mA
LD Forward voltage	V _f		2.1	2.3	V
Bias Voltage ³	Va		4		V
Polarization extinction ratio	PER	15	18		dB

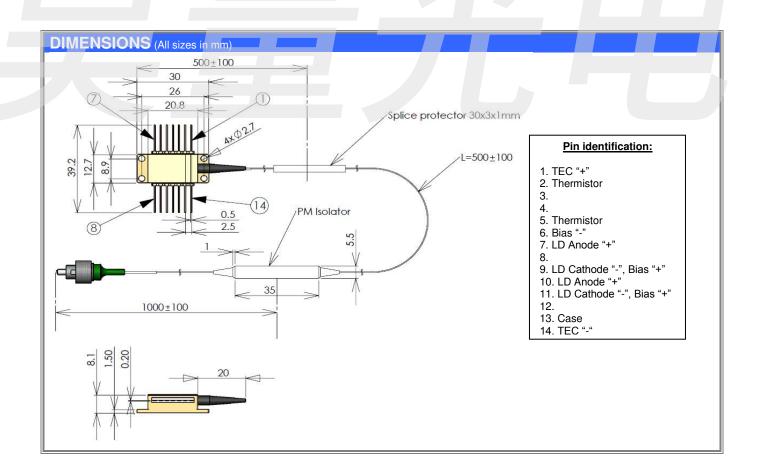
¹ 1150 to 1330nm upon request


³ 0V Bias Voltage upon request


ABSOLUTE MAXIMUM RATINGS						
Parameters	Min.	Max.	Unit			
Laser Diode reverse voltage		2	V			
Operating current		250	mA			
Thermo Electric Cooler current		3	Α			
Thermo Electric Cooler voltage		4	V			
Storage temperature range (in original sealed pack)	-30	85	°C			
Case operating temperature range	5	80	°C			
Lead soldering temperature (max 5 sec.)		250	°C			


Page | 1

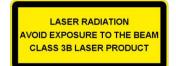
² 25-100GHz mode-spacing upon request



Doromotoro		
Parameters	Value	Unit
Thermistor type	NTC	
Resistance @25°C	10 ± 0.05	kOhm
Beta 0-50°C	3477	K
	JRVE 30 35 40 45 50 5 perature, C	5 60

FIBER SPECIFICATION					
Parameters	PM 1300 Un				
Туре	Panda PM1300				
Cladding diameter	125±1 µr				
Coating diameter	245±5	μm			
Mode-field diameter (at 1310nm)	9.5±1	μm			
Single stage fiber isolator: isolation	30	dB			
Length	2 ± 0.5	m			
Connector	FC/APC				
Connector alignment to the PANDA fiber CONNECTOR KEY FAST AXIS SLOW AXIS					
SLOWAXIS The output light is polarized along the slow axis of PM fiber.					

SAFETY AND OPERATING INSTRUCTIONS


The laser light emitted from this module is invisible and will harmful to the human eye. Avoid looking directly into the fiber output or into the collimated beam along its optical axis when the device is in operation. Proper laser safety eyewear must be worn during operation.

Absolute Maximum Ratings may be applied to the Laser Diode for short period of time only. Exposure to maximum ratings for extended period of time or exposure above one or more max ratings may cause damage or affect the reliability of the device.

Operating the laser diode outside of its maximum ratings may cause device failure or a safety hazard. Power supplies used with the component must be employed such that the maximum peak optical power cannot be exceeded. A proper heatsink for the laser diode module on thermal radiator is required.

ESD PROTECTION – Electrostatic discharge is the primary cause of unexpected laser diode failure. Take extreme precaution to prevent ESD. Use wrist straps, grounded work surfaces and rigorous antistatic techniques when handling laser diodes.

NOTE: Innolume product specifications are subject to change without notice.