

MIRRORS

Aspheric mirrors, including paraboloids, hyperboloids and ellipsoids, as well as mirrors with a customer-specific aspherical surface, are among the specialties of asphericon's product range.

Diameter 1 -	420 mm
Didiffeter	
Diameter Tolerance < 0	.015 μm
RMS Irregularities (RMS _i) 25	nm
Surface Imperfections (Scratch/Dig) 20	- 10
Coating Cus	stomer-specific
Full-surface Interferometric Measurement Opt	tional
	stomer-specific most every type of glass, silica, germanium, silicon, IR lenses, zerodur)
Mounting Cus	stomer-specific

All products are also available as reflective mirror elements.

 $^{^{1}\}text{A: R}_{\text{MMX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 400-600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{B: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 600-1050 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MAX}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MS}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MS}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MS}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MS}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MS}} < 1.0\%, \text{R}_{\text{MS}} \le 0.4\%, 1000-1600 \text{ nm}, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MS}} < 1.0\%, \text{AOI} = 0^{\circ} \mid \text{C: R}_{\text{MS}} <$