一束激光可以分为两部分,一部分是相位,另一部分是光斑光强分布,他们是相互关联的,可以通过改变光束的相位部分,对光斑进行整形。上述GS算法就是其中的一种方法。主要分为四步1.假设入射光斑是均匀光强,相位因为是未知的,可以用一个随机相位替代,或者通过Target Intensity的IFFT变化求得2.然后经过FFT变化后,得到的是焦距是的光斑分布,光强与Target Intensity比较近似,但是不够理想3.替换上述步骤的光强分布,保留相位分布,得到新的一束激光4.经过IFFT变化后保留光斑的相位,作为下一次迭代的初始相位通过上述步骤的反复迭代,会不断改善Approximation to ta ...
镜,光栅图,全息图,泽尼克多项式等,下文将一一介绍每种图片的生成方法。一、贝塞尔光束打开meadowlark空间光调制器官方应用软件Blink,找到Pattern Generation,在下拉箭头当中选择贝塞尔光束(Bessel Beam),然后点击Generate Image,即进入了相位图生成界面。a.Spiral单选按钮可以生成涡旋光,参数栏里填上不同的参数可以得到不同的涡旋光,例如个数和中心值。b.Fork,可以生成叉型光栅,不同参数也就得到不同的光栅。c.Axicon,可以生成轴棱锥,参数框里填入波数。d.Rings可以生成同心圆环,输入内径与外径,以像素为单位;输入参数数值,以灰度 ...
计算机生成的全息图在光遗传学、数据存储或虚拟和增强现实的近眼显示器等领域产生复杂的三维波前等。文章创新点:德国马克斯·普朗克量子光学研究所的Edoardo Vicentini(一作)和Nathalie Picqué(通讯)提出一种双光梳数字全息术,可以获得每一个光梳线下的复数全息图。其潜在应用包括远距离精确尺寸测量(无干涉相位模糊)、具有高光谱分辨力的高光谱三维成像等。原理解析:两个重复频率略有不同的频率梳生成器,一个为样品臂提供光束,另一个为参考臂提供光束。样品臂接收由反射型或透射型三维物体散射回的光束,作为物光。物光和参考光由分束镜合束在一个无透镜探测器矩阵上形成干涉信号。系统原理图见图1 ...
。但是,传统全息图不具备对虚物全息重建和动态显示的能力。为了克服这个困难,在1966年的时候,Brown和Lohman发明了计算机生成全息(computer-generated holography, CGH),这种技术使用物理光学理论来计算干涉图案上的相位图。随着技术的发展,通过使用如空间光调制器(SLM)或数字微镜设备(DMD)这样的数字设备,CGH也能展示出动态全息显示的能力。然而,使用SLM或DMD的CGH长期存在着小视场、孪生像、多级衍射的问题。随着纳米加工技术的巨大发展,超材料和超表面引领全息图研究以及其它研究领域进入了工程光学2.0时代。超材料由亚波长级的人造结构(artific ...
记录下干涉的全息图,其强度记为Em_off。(4)如图1b,开启超声,记录下散射场和参考场的全息光强Em_on。此时的散射场由超声聚焦区域的零阶光子和超声聚焦区域外的光子组成。两个强度的差值Em_on-Em_off消除超声聚焦区域外的光子的贡献,只留下扰动场的贡献。图1c,在SLM(空间光调制器)上生成Em_on-Em_off的共轭场,用回放光束照射SLM,即可生成一束时间反转的光束,这束光在超声的聚焦位置处会聚。DOI:https://doi.org/10.1038/s41377-021-00605-7更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产 ...
模式转换法、全息图法等,一下对其进行简单介绍。螺旋相位板法:使光束通过具有螺旋相位分布的螺旋相位板,使其被赋予螺旋相位分布,依此方法生成涡旋光束;但因制作工艺的限制实际中使用的螺旋相位板的相位变化多为阶梯型,即阶梯螺旋相位板而非平滑,如图3和图4所示。图3:阶梯螺旋相位板的相位分布示意图图4:理想相位分布和阶梯相位分布的螺旋相位板相位分布示意图螺旋相位板的原理是改变通过其光的光程,并使其上的光程改变量呈螺旋分布,即可使光通过后相位螺旋分布而产生涡旋光束,如图5所示。图5:螺旋相位板生成涡旋光束示意图空间光调制法:该方法是通过空间光调制器的液晶面控制反射光的相位分布,通过计算机向空间光调制器输入 ...
制)的傅里叶全息图相比,BPFL 给出的菲涅耳全息图源自衍射级,其中非调制光的贡献可以忽略不计。另一方面,与用于相同目的的其他双臂干涉装置相比,所提出的基于衍射的光学装置受环境波动的影响较小,但基于不受振动影响的在线干涉装置的方法除外.由于我们的方法只需要记录一个很好的空间定位焦点的辐照度,原则上不需要使用具有空间分辨率的测量设备。也就是说,可以使用单像素检测器(例如光电二J管、功率计甚至普通光谱仪)收集焦点处的光强度变化。因此,除了 SLM 本身之外,光学系统仅由分束器和依赖于光强的测量装置组成。此外,由于强度测量是相对的,我们的校准方法通常对不均匀的辐照度分布非常宽容,尤其是缓慢变化的变化 ...
法,如傅里叶全息图,或快速脉冲照明,如飞行时间(TOF)成像。此外,QPI提供了无扫描显微镜模式的基础,克服了共聚焦方法。量子全光相机有望提供全光成像的优势,主要是超快和免扫描的 3D 成像和重聚焦能 力,其性能是经典相机无法企及的。全光成像设备能够在单次拍摄中获取多视角 图像.它们的工作原理是基于对给定场景中光的空间分布和传播方向的同时测量。获取 的方向信息转化为快速 3D 成像所需的重聚焦能力、可增加的景深(DOF)和多视角 2D 图像的 并行获取。 在全光照相机中,方向检测是通过在标准数码相机的主镜头和传感器之间插 入微透镜阵列来实现的。传感器获取复合信息,该复合信息允许识别检测到的光来 ...
出了一种基于全息图外推方法的无透镜数字全息显微技术。其它科学家将该方法成功应用于太赫兹同轴无透镜数字全息显微中。高兆琳、刘瑞桦等老师在研究基于数字微镜阵列的高分辨率定量相位和超分辨荧光双模式显微技术时应用了这种技术。荧光显微成像中,可获取精细结构的信息,但荧光标记对实验体有破坏(光毒性、光漂白等)。无透镜数字全息显微技术不直接作用于实验体,有长时间无损检测的可行性,与荧光显微成像技术形成互补。以高老师、刘老师的研究工作为例,简介结构光照明显微技术的实例。如上图所示为基于数字微镜阵列的高分辨率定量相位和超分辨荧光双模式显微技术的实验光路。结构光照明显微部分,应用DMD作为反射式空间光调制器,DM ...
计算机生成的全息图(CGH)被用于测量球面。与其他光学方法一样,测量仪器的选择是基于成本和效益的比较,以便能够决定使用哪种方法。球面的应用领域球面的应用范围很广,例如在计量学、航空航天(安装在卫星内的光谱仪)或医疗技术(用于检查眼睛前段的裂隙灯)。由于低制造成本、快速生产时间和广泛的光学应用的结合,球体是光学市场的一个组成部分,并以较高性价比来说服人们。球面单透镜的应用优化根据不同的形状,球体的收集、散射或聚焦特性被用来将入射光线折射到所需程度。例如,在成像系统中,高图像质量起着决定性作用,并伴随着低成像误差。此外,它还可以通过考虑各种因素来提高--取决于现有系统的要求。这些因素包括,例如,所 ...
或 投递简历至: hr@auniontech.com