展示全部
和输出电压/暗电流输出电压, 全井容量 / 噪声,Dynamic range = Full well capacity / read noise)binning:设置平均像素的数值,可以降低噪声。做binning以后,会提高满阱容量,但读出噪声不变,这样就会相机的提高动态范围。多帧图像平均(averaging over frames):设置平均多帧的数值大于1可以降低噪声。此功能在光强或光束形状不稳定的情况下非常有用。特别是在光强较弱的时候,利用该功能可以抑制光束分析仪的噪声。3D结果图形的显示:实体轮廓最易于观察,但是也要求更长的计算时间,对帧频率有一定的限制。选择网状格式有利于提高显示速度 ...
极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。如上图是钙钛矿微区的光电流成像图,扫描范围是30um×30um,扫描步径3um。钙钛矿主要应用在太阳能电池领域,从太阳能电池结构和工作原理上来看,反映电池性能的其中一个参数就是太阳能电池的效率,它跟钙钛矿材料的吸光能力有关,也跟载流子分离能力有关。一般高效太阳能电池要求光吸收层能够充分吸收紫外-可见-近红外区的光子以产生激发态。当受到光的激发,钙钛矿价带中的电子跃迁到导带,产生电子-空穴对,在内建电场的作用下,空穴和电子分别往正极,负极迁移,载流子的定向移动于是形成光电流。 ...
CCD都存在暗电流,且暗电流大小会受探测器温度影响较大,仪器内部产生的热量能否及时从设备中排出,对设备测试数据的稳定性影响明显。四、光谱分辨率(仅针对光谱仪)光栅刻划线密度:光栅的刻划线密度,影响光栅的分光能力。在一定范围内,光栅刻划线密度大,则光栅可以将样品光谱分散到更大的角度上,可以将波长分的更细,增加线阵CCD的像元个数,则可以提高光谱分辨率。但同时,在样品光强不变的情况下,单个传感器上的分得的信号强度变弱。这往往需要厂商在设备成本、探测精度和光谱分辨率之间做一个权衡。五、单次测试时间仪器的测试时间,一方面取决于探测器需要多长时间获得足够强度的信号,另一方面设备对数据的处理速度,一次测试 ...
题有:噪声,暗电流,饱和溢出模糊。1、噪声:噪声是影响CMOS传感器性能的首要问题。这种噪声包括固定图形噪声FPN(Fixed pattern noise)、暗电流噪声、热噪声等。固定图形噪声(FPN)产生的原因是一束同样的光照射到两个不同的象素上产生的输出信号不完全相同。噪声正是这样被引入的。对付固定图形噪声可以应用双采样或相关双采样技术。具体地说来有点像在设计模拟放大器时引入差分对来抑制共模噪声。双采样是先读出光照产生的电荷积分信号,暂存然后对象素单元进行复位,再读取此象素单元地输出信号。两者相减得出图像信号。两种采样均能有效抑制固定图形噪声。另外,相关双采样需要临时存储单元,随着象素地增 ...
处理首先使用暗电流减法将获取的原始高光谱数据转换为传感器亮度,然后对传感器和波段特定辐 射校准数据进行图像归一化和乘法(图2)。在第二步中,需要应用传感器特定光学畸变进行两种几何校正。第一个效果是沿视场的失真,类似于鱼眼镜头的失真。这导致图像从中心到上下图像边界 的缩短。第二种效果可以描述为狭缝弯曲,是指当前扫描(直线)线的弯曲记录。这两种效果都可 以通过对视场中的每个像素应用校正值来消除。所需参数包含在传感器制造商提供的查找表中。如 果在相同的设置下获得了对同一场景的几次扫描,则可以在此时执行这些场景的叠加和平均。通过 图像叠加,可以提高信噪比,减少由于改变云覆盖而可能发生的时间光照变化。图 ...
都经过平场和暗电流校正。对于给定的图像集,根据捕获的每个目标的相机信号与分光光度测量得到的参考三刺激值之间的关系,估计出颜色变换矩阵。为了计算从记录信号到渲染颜色的直接转换,在光谱校准中选择了比色校准。本实验未进行光谱校准,即先估计目标反射光谱,然后计算其显色性。利用每一组中所有可用波段构建颜色变换矩阵。因此,矩阵的大小从10波段多光谱集的3 × 10到6波段多光谱集的3 × 6,常规的3 ×3RGB图像,其中每个矩阵的第2维对应于总波段数。根据直接比色校准,对这个矩阵迭代优化,得到目标中所有补丁的小平均值E00。优化后,每个目标得到的矩阵被用于交叉剖面波段集,预测相反的L*a*b*值,核验 ...
好、噪声低、暗电流小、尺寸小。缺点:易饱和、光谱范围有限、易受温度影响、有效区域有限、放大电路。二.热敏探测器热敏探头先将光子能量转化成热量,再转化成电流。热敏功率探头基于热电效应(亦称为塞贝克效应):金属或合金的一端受热时会释放电子,电子会朝着较冷的一端移动,这是一种只要存在温度差就会产生的现象,产生于金属之间。使用热敏功率探头测量较低的功率水平时,需要防止敏感区域受到黑体辐射。此外,也不要有任何通风或环境温度变化。而热敏探测器同样有着自身的优势和缺点在于:优势:耐用性高、光谱范围大、有效区域大。缺点:灵敏度较差、噪声大、响应速度慢、尺寸较大。对于连续光,光电二极管探测器和热敏探测器都适用, ...
此外,研究了暗电流产生的陷阱密度和光致发光(PL)衰减曲线,以确定受体材料的暗电流抑制和快速光响应效应。图1 a) 包含阻挡层的有机半导体器件结构示意图。插图:由电子受体材料(PC71BM 和 eh-IDTBR)组成的感光层的纳米结构填充示意图。 b) PBDTTT-EFT、eh-IDTBR 和 PC71BM 的分子结构。通过以6 mW cm-2的入射功率密度打开和关闭 LED 来评估有机半导体器件的响应时间。如图2所示,富勒烯受体有机半导体表现出 6.24 µs 的上升时间和 10.8 µs 的下降时间。由于OPD器件的响应时间受内部电容和电荷传输时间的影响,推测 PC71BM 具有较高的内 ...
测量探测器的暗电流,然后从每个探测器单元的光测量结果中减去暗电流的光信号贡献值。图2 简化方框图图3 PR系列亮度计光路图仪器出厂时已通过相应的校准系数校准光谱数据,校正系数包括波长精确度修正、光谱分布修正和光度修正。波长校准采用的是具有特征光谱的氦灯光源,线光源提供了已知的光谱发射谱线通过光栅分光后投射到多探测器上再通过软件显示;用于波长校准的氦谱线包括388.6nm,447.1 nm,471.3 nm,587.6 nm,667.8 nm,706.5 nm和728.13 nm;接下来,可用光谱校准系数校准这些数据;这些校准系数确保被测目标光谱能量分布(SPD)和由此计算出的数据比如CIE色度 ...
效面积越小,暗电流越小,响应速度越快;光电二极管的下降时间(响应时间) 与其探测带宽 关系如下:式中C和R分别为读出电路的阻抗和光电二极管的结电容,其中:式中的和分别为真空介电常数( 固定为)和相对介电常数;A为光电二极管的有效面积;d为PN结的耗尽层厚度。其中A越小,则越小(即响应速度越快);其次还可以通过缩短耗尽曾厚度来是响应速度加快。相关文献:[1].Toru.Y.(2015) “光学计量手册”,[M]:67-71更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了 ...
或 投递简历至: hr@auniontech.com