外光学系统在光能的传递、成像和接收等光学概念上并没有本质的区别。但由于工作在红外波段,一般以光电探测器件作为光能的接收元件,因此与一般光学系统相比,也有其自身的一些特点。任何高于绝对零度的物体都会发出红外辐射,在环境温度下,绝大部分红外辐射发生于3u以上的光谱区域。然而并不是所有波段的红外辐射都具有很好的大气透过率。研究表明,红外光在大气中透过率比较高的波段有:近红外区城(低于2.4u 的一些波段)、中波红外(波长约为3~5u)、长波红外(波长约为 8~14u)。通常人们将这种在大气中衰减较小的波段称为大气窗口。对于近红外区域,由于绝大多数光学玻璃可以透过远至2.5u的红外光,因此在光学系统设 ...
泵浦较高的激光能级(Nd3+ 约为 870 nm,Yb3+ 约为 970 nm),这在不增加激光阈值的情况下减少了量子缺陷。然而,在这些情况下,由于吸收线较窄,泵浦更加困难。除了减少热负荷外,准三能级操作提高了激光效率,因此在满足小有效体积和高效散热的前提下,尽管激光阈值提高,但整体激光效率可以更高。由于在上激光能级 之上没有进一步的 4f 能级,因此不存在激发态吸收 (ESA) 的风险,并且可能降低了能量迁移的风险,从而允许更高的掺杂水平。然而,对于更高的掺杂水平和更高的反转,似乎存在一些尚未完全了解的非辐射复合通道。与其他稀土离子相比,与主体材料晶格的强耦合以及由此产生的相对较宽的吸收和发 ...
外光学系统在光能的传递、成像和接收等光学概念上并没有本质的区别。但由于工作在红外波段,一般以光电探测器件作为光能的接收元件,因此与一般光学系统相比,也有其自身的一些特点。上次我们简要介绍了下红外光学系统,这次我们来介绍下红外光学系统的工作方式以及与普通光学系统相比所具有的特点。红外光学系统的工作方式与探测器的发展紧密相关。早期红外探测系统通常采用光机扫描的方法,使小型探测器相对于目标顺序扫描整个视场。这种工作方式又分为串行扫描与并行扫描(推帚式扫描)两种,如下图所示。前者是由小型探测器首先扫描视场上方的一个窄条带,从左扫至右,然后下移至第二排窄条带,重复扫描过程,直至记录目标的整个幅面。事实上 ...
约1/8的激光能量应用于样品被CRS过程有效利用。相比之下,对于几皮秒的脉冲,所有的激光强度都集中在与拉曼共振完全匹配的较窄频段,可以很好地分辨。虽然宽带飞秒激光器的光谱分辨探测可以以高分辨率恢复CARS或SRS光谱,但它通常需要CCD相机等多元素探测器,每个像素的读出时间非常长,这严重限制了成像速度。脉冲长度稍长、平均功率较高但峰值功率降低的第②个特征是非线性光损伤降低。这实际上是有好处,通过激发6 ps脉冲比150 fs脉冲允许更多的总SRS信号,即使在广泛共振的情况下。其原因是,在许多样品中,随着激光脉冲宽度的减小,非线性光损伤比感兴趣的信号增加得更快。在使用较短脉冲的情况下,光损伤显然 ...
表示)吸收的光能量等于或大于较高能级的光(S1;S2;:::;Sn),电子在短时间内被激发到更高的能级。电子将经历振动弛豫到激发态的最低振动水平(记为S1),这是一种称为内转换的非辐射过程。从S1电子态,分子通过辐射或非辐射过程回到基态。图1表示了在这些能级中发生的不同发光现象。荧光是分子(荧光团)通过发射可检测的光子(时间尺度为)衰减到基态的辐射过程。荧光发射发生在激发电子能级最低的位置(S1)。这种来自最低激发电子能级的强制发射确保了发射光谱保持不变,并且与激发波长无关。由于振动弛豫和内部转换中的能量损失,发射的荧光光子的能量较低(即发射发生在比激发更长的波长)。这种发射波长的位移称为斯托 ...
相干拉曼技术中常用的扫描方案扫描有两种常用的方法:样品扫描和光束扫描。样品扫描提供了一个简单的设备,但通常较低的速度和较小的视野,而光束扫描更复杂的实现,对光学系统的性能要求更高,但提供了更大的视野和更高的成像速度。在样品扫描中,整个相干拉曼光学设置是固定的,样品相对于焦点平移。这意味着光学系统可以对准一个固定的激光束,这比在一系列可能的激光束位置上对准系统更容易。为了获得高的空间分辨率,需要一个平移阶段具有较高的精度和重复性要求。通常,采用压电驱动的弯曲级。这些阶段提供的步长和重复性远远超过光学显微镜(通常小于5 nm)和较大数百微米的平移所要求的。这种制度主要有两个缺点:一是图像的较大视场 ...
光阑起到调节光能量以适应外界不同照明条件的作用。其系统结构如图所示。摄影系统中,可变光阑即为系统的孔径光阑,底片框为视场光阑。为保证轴外光束的像质,可变光阑的实际位置大致设在摄影物镜的某个空气间隔中。孔径光阑的形状一般为圆形,而视场光阑的形状为圆形或矩形等。摄影物镜的光学成像特性摄影物镜的光学成像特性主要由三个参数决定,即焦距 f' 、相对孔径 D/f' 和视场角 2ω。焦距 f'物镜的焦距决定了物体在接收器上成像的大小。用不同焦距的物镜对同一位置物体进行成像时,焦距越大,所得的像也越大。为满足各种成像要求,物镜焦距值相差很大,短的只有几毫米,长的达数十米。变焦镜头,当 ...
中的水吸收激光能量,产生高温汽化,组织内压力超过结构耐受强度后,硬组织发生微爆破。热机械效应紧随其后。能量扩散的瞬间,周围矿化组织爆破崩解,实现了切割牙体硬组织的效果。牙齿发生龋坏后,组织中含水量显著上升。激光照射时龋坏组织会先爆破崩解,从而达到选择性去腐的效果,较大限度保存健康的牙体组织。铒激光的作用效果主要取决于能量、脉冲宽度、照射时间和水冷却4个因素。激光对牙体组织的作用效果分为组织切割和组织处理。组织切割是指去除龋坏的牙体组织,铒激光能量被组织吸收后产热,在喷水的调节下,一旦达到特定的阈值即可实现切割硬组织的作用。扫描电镜下观察,经典的铒激光切割牙釉质样本为微爆破而非溶解,即:表面干净 ...
表面接收到的光能影响拉曼光谱的质量。拉曼散射强度与入射光波长的四次方成反比,荧光等杂散光的影响,在不同的激发波长下获得不同质量的拉曼光谱。在隔离拉曼系统中应用的激光源通常是紫外、可见光和近红外。在532nm激发下,样品本身或背景的荧光可能会干扰拉曼信号,而在355nm和266nm激发下,干扰减弱,且266nm的信噪比优于355nm。但也有例外,对于RDX, 355nm的信噪比优于266nm。从灵敏度和抗扰动能力的角度来看,532 nm激光不是刺激拉曼信号的较佳选择,UV或DUV也是一种选择。采用紫外光源有以下三个优点:1)从拉曼信号强度与激发波长的关系来看,短波的拉曼信号较强;2)减少荧光干扰 ...
,工艺方便,光能损失也小,宜于在焦距不长、相对孔径不大的场合采用。2.双分离物镜当口径大于50~60毫米时宜采用双分离物镜。这种物镜在玻璃选得恰当时,除能校正好色差、球差和彗差外,还能利用灵敏的空气问隙的少量变化来校正带球差,因此可达到相当大的相对孔径,但色球差和二级光谱出不能校正。3.三分离物镜将双分离物镜中的正透镜分裂成二片时,即获得三分离物镜,如下图1所示的二种型式。这种物镜能改善对色球差的校正,若选用特种玻璃,并与其他玻璃适当配组,还可校正或改善二级光谱。但要在此同时控制好带球差,相对孔径只能是相当小的。目前实际应用的复消色差物镜( 多半用作平行光管物镜)都采用这种型式。图14.内调焦 ...
或 投递简历至: hr@auniontech.com