展示全部
AOM脉冲选择器(Pulse Picker)
声光移频器(AOFS)
多通道声光调制器(AOMC)
光纤耦合声光调制器(Fiber-Q)
920nm/1064nm飞秒光纤输出模块
声光调制器(AOM)
声光可调谐滤波器 (AOTF)
3910系列射频驱动器(VCO RF driver)
40KHz高速斩波器
关,锁模器,声光调制器(AOM),声光偏转器(AODF),声光移频器(AOFS),声光可调谐滤波器(AOTF)声光设备本质上是一个光学单元(晶体)的其中一个面与一个射频信号发生器(产生10-100MHz级别的超声波)相连接而组成的一个器件,由于光的弹性效应,超声波对介质的折射率产生正弦扰动,使得介质折射率有了周期性变化,形成了体光栅结构,光栅的周期由声速和频率决定,当光波长跟驱动器频率匹配时,光和光栅相互作用,行程强的一级衍射效应。其中声光调制器AOM主要用来做光的调制,可以对光束进行数字调制也叫做开调制(TTL调制),模拟调制,或者混合调制。还可以对一些不方便功率调节的激光器进行功率调节。上 ...
光调制器以及声光调制器等。还可以用紫外光刻来制作特定的衍射光学元件来调制光场。现在用的较多的是由计算机寻址的液晶空间光调制器实现全息元件,通过改变全息元件就可以使得所形成的光阱作动态变化。在计算机出现之前,需要采用激光全息的方法形成有限形状的全息图。目前在计算机的辅助下,可以实现任意形状的全息图。不过,每实现一种新设计的光阱,都需要重新计算相应的全息图。随着计算机速度的不断刷新以及新的算法的出现,在一般的科研实验室已经可以很容易实现任意形状的全息光镊。原则上全息光镊可以产生任意形状、大小、数量的光阱。通过改变捕获光的相位分布,可以使捕获粒子在光阱中按设定的路线运动,为实现光镊分选粒子提供更加方 ...
飞秒激光器+声光调制器方案所替代。 图一:左:Chameleon系列钛宝石飞秒激光器和Conoptics电光调制器;右:ALCOR XSight 920nm光纤飞秒激光器,集成声光调制器用于全功率调制,激光头尺寸387*151*91mm3, <7kg。 法国SPARK LASERS公司于2017年推出“ALCOR”系列飞秒光纤激光器,功率最高可达2W@100fs脉冲宽度,已陆续在国内交货使用,收到客户一直好评。 一键式操作、直观用户界面、高功率稳定性、无需维护校准是其相对钛宝石激光器最大的特点。图二:ACLOR 920nm光纤飞秒激光器,平均功率可达2W, ...
制器也可以是声光调制器,外加相应的驱动器。EOM:对于电光设备,脉冲选择器/Pulse Picker由普克尔斯盒(EOM,Pockels)和一些偏振光学器件组成;普克尔斯盒控制光束偏振态,偏振器件根据光束的偏振态决定此刻光束是通过还是阻挡。AOM:声光脉冲选择器/Pulse Picker的原理是向声光调制器施加一个短的RF脉冲,以将所需的脉冲偏转到指定的方向。使得偏转的脉冲可以通过一个孔,而其他的则被阻挡掉。在任何情况下,调制器的所需速度都取决于脉冲序列中脉冲的距离(例如,取决于脉冲源的脉冲重复率),而并非脉冲持续的时间。EOM是一种快速、通用的解决方案,但是EOM需要高压驱动,由于高压切换速 ...
随着工业化发展,原油水面泄露事故偶有发生,针对水面原油泄漏的高效检测手段成为有待解决问题。在偏振光照射的情况下,由于水面与油面测得的stokes 矢量在邦加球中的轨迹有明显的区别,通过对所测得的信号的庞佳球轨迹即可实现对水面溢油的检测,所以全斯托克斯偏振成像成为水面溢油的一个有效方法。全斯托克斯偏振成像方法主要有分幅偏振成像和分时偏振成像两种成像方式。分幅偏振成像是在相机前安装定制偏振片阵列使得相机测出每一区域的所有斯托克斯分量,从而实现全斯托克斯偏振成像。分时成像中,则是需要在相机前加装一个偏振调制器,从而使得相位可以随时间周期性变化,再配合后端锁相放大器等解调工具从而实时的得到斯托克斯各分 ...
克斯束通常由声光调制器(AOM)或电光调制器(EOM)进行调制。调制频率通常在MHz范围内。这有助于减少由光热膨胀产生的背景并提高图像采集速度。在本应用笔记中,泵浦光束是由AOM在2 MHz左右调制的。为了使泵浦和斯托克斯光束在时间上保持一致,一个电动的延迟用于调整任一或两个光路驱动器的光路长度。对于具有光谱聚焦的飞秒SRS,延迟级还用于微调泵浦和斯托克斯束之间的能量差。像大多数其他非线性光学显微镜一样,光束扫描方法通常用于CARS和SRS图像采集。在物镜之前放置一对振镜或振镜扫描头。在本例中,使用了一对振镜(GVS 102,Thorlabs)。物镜/聚光镜,探测器和数据采集在扫描头后,将光束 ...
(EOM)或声光调制器(AOM)进行调制。调制频率通常在兆赫兹的频段。这样可以有效的降低光热效应,提高图像采集的速度。在这个应用指南中,我们将使用AOM对泵浦光在2兆赫的频率进行调制。在光路中,一个电动延时台被用来准确的调节泵浦和斯托克斯光之间的延时。对于光谱对焦的SRS来说,这个延时台同时被用来微调两束光之间的能量差。像大多数非线性光学成像系统一样,SRS和CARS的成像大多使用的是光束扫描的方法。一堆振镜被放置在物镜前对光线进行扫描。在这个展示中,我们使用了一对Thorlabs的GVS 102振镜。物镜,聚光镜,探测器,数据采集当激光经过振镜扫描后,通过物镜在样品上形成一个焦点。相干拉曼成 ...
光调制器以及声光调制器可以实现基于频率调制光谱的PDH(Pound-Drever-Hall)、调制转移光谱技术(MTS, modulation transfer spectroscopy)等调制方法,但由于会增加光路的复杂性, 并且损失了一部分可观的光功率,这里不做详细的介绍。而塞曼 (Zeeman) 调制稳频不但对于激光器的锁定频率输出没有调制,并且光路也较为简单,实验效率较高。塞曼调制稳频简单来说是需要给 Rb 原子池施加调制,通过缠绕在原子池周围的线圈来调制磁场来改变 Rb 的原子能级,从而实现对激光器输出频率的调制。在磁场的作用下,原子磁子能级塞曼分裂,上、下能级发生移动。当磁场较弱时 ...
压电陶瓷或者声光调制器等其他响应器件,进行频率补偿,最终实现将普通激光锁定在超稳光学腔上。关于PDH技术的理论细节可以在一些综述论文和学位论文中找到。为了实现PDH锁定,需要一些专用的和定制的电子仪器,包括信号发生器,混频器和低通滤波器。Moku:Lab的激光锁盒集成了大部分的PDH电子仪器,在提供高精度的激光稳频功能上是具有独一的,紧凑的,易于使用的仪器。图1:PDH稳频系统原理图二. 实验装置Moku:Lab的激光锁盒集成了波形发生器、混频器、低通滤波器和用于PDH锁定的双级联PID控制器。通过调节激光腔的长度,可以监测反射光的振幅,并在屏幕上实时显示PDH信号。用户只需轻轻一敲就可以将激 ...
波导形式中,声光调制器允许光和生成声波有更长的相互作用长度,从而进一步提高STP。单个leaky声光波导可以具有每种颜色50MHz的可用带宽,对应于30Hz时1.67M像素。通过在单个晶体上制造多个波导通道,可以轻易达到50G像素/s的STP。AOM zui初只演示了水平视差,但是使用单个激光源馈送不同的波导并控制相位以实现水平和垂直相干光束转向在理论上是可行的。另一种高STP器件是相控阵光子集成电路(phased array photonic integrated circuit, PIC)。在这种方法中,纳米光子相控阵是通过在光子晶片上记录分支波导来构建的(见图6)。这些波导将从单个源投射 ...
或 投递简历至: hr@auniontech.com