环形谐振器、声光调制器和3D打印的替代架构来解决这些问题。其它基于相变材料、电吸收和电光效应的方法也可以解决其中的一些问题,但这些技术仍未成熟。当前不足:传统的光学神经网络(optical neural networks,ONNs)使用可调谐的移相器调节每一个MZI的输出来模拟任意的矩阵-向量乘法。这些移相器是ONNs的可编程性的核心所在,但是它们占用空间大,且速度慢。文章创新点:基于此,美国南加州大学的Haoqin Deng(第一作者)和Mercedeh Khajavikhan(通讯作者)提出了一种利用宇称时间对称(parity-time symmetric,PT)耦合器作为构建模块的光学神 ...
束光,分别被声光调制器AOM1和AOM2移频调制。四个声光调制器的移频量分别为δf1=25MHz,δf2=25MHz+40Hz,δf3=40MHz,δf4=40MHz+120Hz。因此,频率为f1+δf1和f2+δf3的光束合束后进入电光幅度调制器1(Amplitude Modulator 1),振幅调制器1被同步信号和脉冲发生器驱动,生成重复频率frep=1000MHz或500MHz的50ps脉冲链,作为物光。与此类似,振幅调制器2生成frep+δfrep=1000MHz+2Hz或500MHz+1Hz的50ps脉冲链,作为参考光。物光由两个频谱上分离的子光梳组成,其光学频率中心分别为f1+δ ...
续激光,经过声光调制器(acousto-optical modelator,AOM)、函数发生器和光阑控制激光的时序开关输出(目的是降低单次照射时间至~1ms,从而减小散斑拖影现像。如果相机曝光时间能够同样足够低,就不用控制光源的开关)。样品表面平均激光功率为3.5mW。活体成像时散斑图像被20X/0.4物镜采集,经线偏振片提高散斑对比度,最后成像在SCMOS上,其最大采集帧率190fps。视频1:OSIV在光血栓形成中风小鼠模型中的应用参考文献:Muhammad Mohsin Qureshi, Yan Liu, Khuong Duy Mac, Minsung Kim, Abdul Mohai ...
超声导星利用声光调制作为虚拟光源,在非侵入式散射介质内光学聚焦很有应用前景。当前不足:目前使用超声导星在散射介质中进行光学聚焦的技术被称为时间反转超声编码(time-reversed ultrasonically encoded, TRUE)光学聚焦,是由本文汪立宏组于2011年发明的(成果发表在nature photonics上)。简单来说,TRUE描述的是:当散射光子通过散射介质内的超声聚焦场时,一部分光子会发生频移,这部分光子称为超声标记光子;记录超声标记光子的光场,然后时间反转在超声焦点位置产生光学聚焦点。事实上,TRUE 光学聚焦与超声调制光学断层扫描 (UOT) 具有相同的本质,超 ...
扫描振镜或者声光调制器)来实现多微粒捕获与操纵。这些方法受限于器件的扫描频率或者光束偏转角的大小,难以产生大阵列光阱。而基于纯相位液晶空间光调制器可以灵活地产生任意排布的光阱阵列,具有比传统单光镊更高的灵活性。空间光调制器(Spatial Light Modulator,SLM)作为全息光镊的核心器件之一,它通过调制入射光波前,在物镜焦区得到预期的光场以对微粒进行捕获与操纵。Meadowlark 全息光镊系统可以产生多达100多个光阱。图4. 全息光镊系统图5. 点阵图四、液晶空间光调制器的要求1. 光利用率对于光镊应用来说,入射光功率影响着粒子操控的动力。因此空间光调制器的光利用率十分重要, ...
(EOM)和声光调制器(AOM)。EOM——通常被称为普克尔盒,它是基于晶体的,晶体会根据外加的电信号旋转输入线偏振光的偏振面。当与晶体输出端固定的线性偏振片组合使用时,将产生对激光光束强度的调制。有许多晶体支持这种电光效应,包括BBO、KD*P和CdTe,称为普克尔效应。这些可以配置为以各种不同的操作方式;如刚才描述的强度调制器,或可变偏振旋转器。在EOM中,外加电压使入射光偏转。然后可以用偏光片通过或阻挡光束,从而调制光束的强度。AOM实际上是一种可变波束偏转装置。它利用压电换能器连接到透明材料的一侧,如各种玻璃、石英、TeO2。当以射频驱动时,压电换能器会在晶体内产生超声波,从而使材料折 ...
压电陶瓷或者声光调制器等其他响应器件,进行频率补偿,Z终实现将普通激光锁定在超稳光学腔上。关于PDH技术的理论细节可以在一些综述论文和学位论文中找到。为了实现PDH锁定,需要一些专用的和定制的电子仪器,包括信号发生器,混频器和低通滤波器。Moku的激光锁盒集成了全部的PDH电子仪器,在提供高精度的激光稳频功能上实现了便捷易用。图1:PDH稳频系统原理图一.实验装置Moku的激光锁盒集成了波形发生器、混频器、低通滤波器和用于PDH锁定的双级联PID控制器。通过调节激光腔的长度,可以监测反射光的振幅,并在屏幕上实时显示PDH信号。用户只需轻轻一敲就可以将激光锁定在任何过零点。图2: 主用户界面Mo ...
斯光束通常由声光调制器(AOM)或电光调制器(EOM)进行调制。调制频率通常在MHz范围内。这有助于减少光热膨胀产生的背景,提高图像采集速度。在本应用说明中,泵浦光束被AOM调制在2MHz左右。为了使泵浦和斯托克斯光束在时间上保持一致,一个电动延迟台被用来调整其中一个或两个光束路径的长度。对于带有光谱聚焦的飞秒SRS,延迟台也被用来微调泵浦和斯托克斯光束之间的能量差。像大多数其他非线性光学显微镜一样,光束扫描方法通常用于CARS和SRS图像的采集。一对振镜-振镜或振镜-共振扫描头被放置在物镜前。在本案例中,使用了一对振镜(GVS 102, Thorlabs)。物镜/冷凝器、检测器和数据采集在扫 ...
27]或腔外声光调制器[20,28,29]反馈误差信号来调节泵浦功率。可实现的带宽已扩展到100 kHz以上。受激寿命的长短主要取决于激光腔的增益和腔体的设计。然而,在许多应用中,降低在高频区域的快速相位波动是必要的,如标准传输[30,31]和高谐波产生[32,33]。为了抑制的快速相位波动,人们已经研究了将锁相反馈带宽扩展到超出增益寿命限制的方法。采用更快的腔内损耗调制的调制器,如字素[34,35]和光学调制器[36],已被用于更快的控制。电光晶体可以为快速的相位波动提供亚兆赫的锁定带宽。然而,在光梳(OFC)中,使用不同腔内的EOMs抑制快速的相位波动的困难在于,当两个EOMs用于锁相时, ...
用塞曼激光和声光调制器的系统设计,还有人提出采用电光调制和波长调制半导体激光器的方案。Watkins采用压电晶体振荡的方法产生拍频,实验测量了SiO2膜,zui佳测量不确定度可达360pm。以上理论研究和实验表明,干涉式椭偏测量技术对于实时、快速薄膜测量有很好的应用价值与市场潜力,但外差干涉测量中存在的非线性误差是阻碍该技术实际应用的主要原因。外差干涉测量系统中的非线性误差一直是国内外研究热点,研究人员对激光源、偏振分光镜、波片、反射镜等误差源开展了很多研究工作,并取得了许多有意义的研究成果,提出了多种非线性误差测量与补偿的方法。在激光干涉测量非线性误差研究中,偏振分光镜(Polarizing ...
或 投递简历至: hr@auniontech.com