光输出功率和脉冲持续时间随总泵浦功率的变化。图1(a)显示了我们的自由运行双光频梳激光腔的布局。我们使用多模泵浦二极管和端泵浦腔结构,类似于我们之前报道的偏振复用双梳状激光器的配置[20,21]。然而,与过去的报道相反,在有源元件,即增益晶体和半导体饱和吸收镜(SESAM)上的空间分离是通过插入一个具有高度反射涂层的双棱镜来获得的。通过使用一个顶角179°的双棱镜,我们获得了在增益介质上模式分离1.6 mm和在SESAM上模式分离1 mm。图1(b)显示了扫描泵浦功率时单个光梳的性能。该孤子锁模激光器的z大工作点对应2.4 W平均输出功率,脉冲持续时间分别为138 fs(comb1)和132 ...
A),并改变脉冲持续时间。为了图像采集和评估,Holger等采用了光学显微镜(Axiophot, Carl Zeiss)配备了数码相机(ProgRes C12plus, Jenoptic),并搭载了捕获和处理软件(Jenoptic, ProgRes Capture Pro, Version 2.5)。该软件还可以测量热损伤和切割深度,如图2所示。是光学显微镜放大20倍后Er:YAG猪舌黏膜组织切割深度和热损伤宽度的测量,包括凝固和炭化。1. 两种激光器以7.7W激光输出功率和不同切割速度(2,5,10 mm/s)进行对照实验。Er:YAG激光参数:重复频率为200Hz,脉冲持续时间为154µs ...
峰值功率是指脉冲持续时间内所具有的瞬时功率,即E/r,E为飞秒脉冲包络内所携带的能量,r为飞秒脉冲包络的j大值一半所应对的时间宽度。由于r为极短的10-15s量级,即使其携带的能量为毫焦耳量级(10-3J),其峰值功率也高达1012W(TW,太瓦)以上。目前的飞秒激光放大系统可以输出高达1015W(即PW,拍瓦)峰值功率的飞秒激光。如此强峰值功率的飞秒激光脉冲,聚焦之后其焦点区域内所具有的电场强度已经远远超过原子和对其价电子的库仑力。在其作用下,任何固态和气态物质都会在瞬间变成等离子体。由此发展起来的超快强激光物理正在形成强场物理研究领域一个新的分支,并被应用到激光受控核聚变、同步辐射加速器等 ...
21 nm、脉冲持续时间为2.3 ps的光谱和相应的强度自相关迹。带宽为0.2 nm的PMF Bragg光栅滤光梳齿约1560 nm。反射的梳齿被送入耦合器,用于光学外差拍信号检测。发射的梳齿在单通掺铒光纤放大器的两端抽运,平均功率为1300mw。在平均功率为200 mW的情况下,采用优化的自相位调制将光谱拓宽至45.5 nm,通过一段反常色散的PMF产生一个自相关宽度为117 fs(高斯拟合为83 fs)的输出脉冲。图2(c)和(d)分别为压缩光脉冲的展宽谱和干扰自相关迹。然后,放大的脉冲序列直接光纤耦合到一个1550px高度非线性锗硅酸盐光纤[41]。保持偏振的高度非线性光纤(HNLF)在 ...
需连接电脑。脉冲持续时间低至50ps (FWHM),单模光纤耦合(FC/PC),150mW脉冲峰值,功率80MHz 时平均 CW 功率为 1.5mW,提供外部和内部数字同步触发。SPAD单光子探测器:我们的USB 供电光纤耦合单光子 SPAD 探测器专为时间分辨荧光寿命成像和光谱测量而设计。尺寸小(100x60x30mm)且重量轻(235g),可通过USB 供电,光谱响应范围从370nm 到 900nm,7 cps 暗计数,抖动小于200ps。荧光寿命成像FLIM软件:我们的FLIM Studio软件旨在简化荧光寿命光谱和成像实验的数据采集、重建和分析。该环境提供了用户友好的界面和任何用户都可 ...
功率的增加,脉冲持续时间缩短的趋势符合孤子形成的预期逆比例规律(参见图2(a))。在zui高功率操作点,脉冲的持续时间为77 fs,通过二次谐波自相关测量得到(参见图2(d)),在光谱上的半高全宽为16 nm(参见图2(b)),中心波长分别为1058 nm(comb 1)和1057 nm(comb 2)。我们观察到两个梳的无杂波射频(RF)频谱,在一个重复频率约为1.1796 GHz的频点上(图2(c))。重复率差在这里被设置为Δfrep= 21.7 kHz。图2:双梳激光器输出特性的表征,两个梳同时运行:(a) 平均输出功率和脉冲持续时间随泵浦电流的变化。详细的锁模诊断结果显示在(b)-(d ...
散状态和输入脉冲持续时间的不同,导致光谱展宽的现象和机制的集合可以显著变化,某些过程可以主导或被其他过程抑制。超连续谱产生过程的主要非线性因素是:受激拉曼散射、自相位调制、四波混合、调制不稳定性、交叉相位调制、孤子动力学(孤子裂变和孤子自频移)和色散波的产生。尽管超连续谱生成背后有复杂的基础物理学,但中红外超连续谱生成的实际实现相对简单。图1说明了这一点,并描述了商用氟纤维(InF3)超连续介质发生器的概念原理和系统架构。开发了如图1所示的系统。图1所示。基于InF3光纤系统的中红外超连续介质源的基本方案和工作原理示例:所示发射光谱对应于商用超连续介质发生器(Thorlabs, SC4500, ...
光纤激光器(脉冲持续时间:60fs,重复频率:100MHz)。到达TX的22.3mW的NIR泵被转换为大约40µW连续当量的线性极化太赫兹辐射。在所有实验过程中,THz-TDS扫描时间均固定在70ps。光学装置是锯齿形透射几何类型(见图1):光经过两个OAPM后发散输出,然后被另外两个OAPM聚焦。一个样品可以放置在光束的腰部。透射的辐射由第二对OAPM对(与第1对旋转对称)引导到探测器上。此外在平行光束部分插入两个线栅偏振器,以确保高度的线极化。此外,它们还允许通过旋转偏振器的方法来降低强度。为了简化图1的设置,我们删除了所有的OAPM,直接照亮样品,并用专门为RIGI相机设计的镜头拍摄图像 ...
位(红色)。脉冲持续时间为5.5±0.1 fs (FWHM)。欲知详情,请浏览:M. Miranda, P. Rudawski, C. Guo, F. Silva, C. Arnold, T. Binhammer, H. Crespo, and A. L’Huillier, “Ultrashort laser pulse characterization from dispersion scans: a comparison with SPIDER,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of Americ ...
据中心频率和脉冲持续时间(频谱带宽)有很大的不同,如图2所示。一般来说,光源的变换限制脉冲持续时间越长(谱带宽度越小),色散扫描窗口就应该越大,以便捕捉到z佳压缩点周围二次谐波的演变。对于非常短的脉冲,即使少量的GDD应用也会导致显著的压缩/加宽,而对于达到ps宽度的长脉冲或具有大时间带宽积的脉冲,所需的GDD窗口可以高达数十万fs2。对于GDD窗口而言,究竟应该扫描多少色散才能获得稳健的测量和反演,这不是一个简单的问题,需要严格的数学研究,这超出了本文的范围。在这里,我们的目标是根据我们在测量不同激光系统脉冲时的经验给出实用值。图2所示。作为目标脉冲频率和中心频率函数的SHG d-scan实 ...
或 投递简历至: hr@auniontech.com