下参数定义:衍射极限倍数因子M2,或它的倒数k因子。M2或k因子给出了激光光束聚焦程度的理论测量方法。这对评价不同应用领域的光束好坏非常重要。M2或k=1表示理想的衍射光束。换句话说,它直接与波长和透镜系统的衍射极限相关,和激光本身没有任何关系。激光二极管和垂直腔面发射半导体激光器(VCSEL)都是半导体激光器,有着比近轴光束更大的发散角。从典型的激光腔中检测这类激光非常困难。通常重要参数包括:功率输入-光强输出曲线(称为LI或LIV曲线)、光束的光谱以及发散角。由于半导体激光器的发散角较大,需要用透镜聚焦得到可用光束。通过光束形状和发散特性,能够得出光学设计中设备的工作情况。LI曲线可以提供 ...
栅(CBG)衍射后,脉冲中不同频率的光因衍射角不同而分散开,而衍射元件的放置又使脉冲的蓝光部分的光程比红光部分长,这样红光就会先于蓝光离开脉冲展宽器,种子脉冲就得到了初始展宽,经过展宽后的脉冲峰值功率低,这样就不会损伤光学元件且能避免脉冲光过强而产生的各种非线性效应。(2) 脉冲压缩器设计原理:与脉冲展宽器正好相反,脉冲压缩器是将已经展宽的高能量光谱再压缩回其初始的光谱状态。这样,就得到了短脉冲、高功率的飞秒脉冲。那么如何获取一个理想的脉冲展宽器和脉冲压缩气呢? 那么, 啁啾体布拉格光栅(CBG)是一个良好的选择。啁啾体布拉格光栅是第一款可商业用于飞秒激光脉冲的展宽和压缩的光栅产品。它是一种反 ...
栅,产生四个衍射光束,他们之间相互干涉产生条纹后,从干涉途中提取相位图。相位光栅一个棋盘型的光栅,光栅的相位分别是0和π,那么这个相位光栅可以简写成或者记作的卷积,依据傅里叶变换和卷积的性质,只要分别求得两项的傅里叶变换式,然后相乘这一项仍旧是单缝衍射的因子这项是多峰干涉后的结果,周期仍旧是u/2=(m+1/2) π以及v/2=(n+1/2)π并且两项形成后得到如下结果,从下面图中可以看出,主要是存在一级光,旁边还存在一些光束通过上图可以看到,其中仍旧含有一些G级次的光束,可以通过改变单个孔径的面积来抑制多余的G级次光束。从下图可以看出,当单个孔径是周期的2/3时,能够抑制所有偶次的衍射光横向 ...
辐射。例如,衍射光栅已经被用来创建可调谐激光器,它可以调谐超过15%的中心波长扩展调谐Extended tuning laser利用单片集成元件来扩展量子级联激光器的调谐范围已有多种方法。集成加热器可以在固定的工作温度下将调谐范围扩展到中央波长的0.7%,上层结构光栅通过游标效应可以将调谐范围扩展到中央波长的4%,而标准DFB器件的调谐范围<0.1%。应用中红外量子级联激光器已经在许多领域得到了很好的应用。光谱的这个区域之所以有趣,是因为两个事实的结合。在这些波长下,大气(至少在一定程度上)是透明的,而且许多感兴趣的物种具有很强的基本吸收能力,这使得探测和识别它们成为可能。图1描绘了大气 ...
高分辨X射线衍射仪对薄膜的厚度和组成进行了表征。实验和模拟(X ' Pert外延)激光芯X射线衍射曲线如图2所示。这两条曲线具有很好的一致性,确定了材料的组成。在X射线中,低背景和高阶超晶格的尖峰表明,超晶格中应变的增加伴随着尖锐的界面,卫星峰的半大全宽(FWHM)小为21.2弧秒。图2. 30级激光芯的实验和模拟x射线衍射曲线在过去的几年里,人们进行了一系列的实验来缩短QCL的发射波长。为了实现高功率室温连续波运行,将晶片加工成宽度为3 ~ 10 μm的埋地脊结构。一个腔长为3-5毫米的装置被切割并向下安装在钻石底座上。图3总结了3.7 ~ 3.0 μm QCL的功率-电压(P-I- ...
水平的X射线衍射测量,表明离子注入在改变磁各向异性方面是有效的。此外,还制作了器件,并利用不同应用领域的克尔图像显示,畴壁被固定在Bt离子注入区域。这些结果表明,利用离子注入的局部成分修饰可以精确地钉住畴壁。研究结果为实现大容量信息存储提供了参考。17. 通过改变Pt插入层厚度来调节垂直磁化PtCoPt(t)Ta结构的自旋轨道转矩有效场Tuning the spin-orbit torque effective fields by varying Pt insertion layer thickness in perpendicularly magnetized PtCoPt(t)Ta str ...
的工具,然而衍射极限的存在,使得人们无法清晰地观察到横向尺寸小于200nm、轴向尺寸小于500nm的细胞结构。二十一世纪初期,具有纳米尺度分辨率的超分辨光学显微成像技术的出现,使得研究人员可以在更高的分辨率水平进行生物研究。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得;对透镜制造技术提出了一定要求的同时,也限制了观测的视野;日益复杂的设备使得操作和维护也越来越困难等。为解决上述问题,美国Double Helix Optics公司提出了纳米级分辨率成像的新概念-“SPINDLE”,不仅突破了衍射极限,还可以实现三维成像,可捕捉到小至横向尺寸10 ...
传感器,经过衍射光栅分光,使±1级共4束衍射光通过,用CCD记录干涉条纹。采集到的干涉条纹,经过傅里叶变换,分别提取到强度图和XY方向的相位梯度,并合成为相位图。这样通过一次采集,就得到了该位置处的强度和相位信息,同时也能推算出其他位置处的强度和相位信息。一次拍摄,能同时解出强度和相位。三、优势1、相比于夏克-哈特曼传感器,采样点更多,具有更高的分辨率。2、灵活易用,通过简单的设置就能进行测量。3、消色差,一个传感器就可用于400-1100波长范围内的测量。四、探测波长包括从紫外(150nm)到远红外(8.14um)一系列波长范围五、应用案例激光测试解决方案M2、斯特列尔比、Zernike、束 ...
确性,并能在衍射极限下成像小光束结构。主要特点:测量的波长范围:320~1605nm,测量的光斑大小:0.6um~7.5mm,实时监控光斑的形状以及变化,实时测量焦点光斑尺寸、焦距位置,多光束的位置校准和调试。相关文献:[1]吴峰. 微透镜镜组阵列的设计、制备及其应用研究[D].苏州大学,2019.[2]朱咸昌. 微透镜阵列焦距及其一致性检测技术研究[D].中国科学院研究生院(光电技术研究所),2013.您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532,我们将竭诚为您服务。 ...
的补充。由于衍射光的快速振荡使得现代光学探测器无法直接测量其相位信息,因此强烈希望开发一种有效的成像模式,该模式可以提供复值图像来研究无数生物组织的微观结构。这种能力还可以使得自适应光学、表面轮廓、波前传感、光学计量和超快光学中的各种应用受益。(4)SPI与全息结合产生单像素全息(SPH)可获得振幅和相位信息。为了将衍射光的快速振荡抑制到现代探测器可以达到的范围,采用额外参考光束的全息方法成为复原光场信息的有效和直观的方法之一。因此,当与这种方法结合时,SPI 可以进一步推广以从样本中提取复值信息,命名为单像素全息 (SPH)。早在 2013 年,克莱门特等人使用基于液晶的 SLM 和桶单像素 ...
或 投递简历至: hr@auniontech.com