展示全部
级,从而形成双光子吸收,只要高能级上粒子数量够多,形成粒子数反转,那么就可以实现较高频率的激光发射,出现上转换发光。b 能量传递过程ETU能量传递是指通过非辐射过程将两个能量相近的激发态离子A、B耦合,其中A把能量转移给B回到基态,B接受能量而跃迁到更高的能态,从而使B能够从更高的能级发射。c 光子雪崩过程PA光子雪崩过程是激发态吸收和能量传递过程相结合发生的上转换发光。其实要发生上转换发光,发光中心的亚稳态需要较长的能级寿命,光子能在亚稳态稳定存在一段时间,因此在吸收下一个光子之前不会发生弛豫,这样相当于可以经过双光子或多光子过程使其从基态跃迁到较高的激发态,进而发光。您可以通过我们的官方网 ...
倍频晶体,或双光子吸收/发光介质,获得于光强平方成正比的信号,改变延迟可得到一系列这样的信号,这个信号的强度对延迟的函数即为脉冲的自相关信号,自相关法分为强度自相关和条纹分辨的自相关。强度自相关法又分为有背景和无背景的自相关法。线性自相关自相关可用如图所示的迈克尔逊干涉仪实现,入射被分束板分为强度相等的两束光,再在分束板上合束,在同方向共线传播的情况下,一束光对另一束光扫描时,在接收器上可现实干涉信号,由于接收器的响应对于光频是缓慢的,得到的信号只是一个平均值,只和时间的慢变部分有关:设两束光的场强分别为A1和A2,这是电场线性自相关信号,第一项是常数,对应脉冲的能量,第二项是干涉项,这个信号 ...
术,其微小的双光子吸收截面将荧光产生限制在显微镜物镜的聚焦体积内。为了对样品中的单个光学截面进行成像,2PFM在二维扫描激发焦点并记录每个位置的荧光信号,衍射极限焦点提供z亮的荧光信号以及z高的空间分辨率。然而,只有通过自适应光学(adaptive optics, AO)才能维持在体深度的高空间分辨率,自适应光学可以测量和校正成像光穿过光异质样品时在波前积累的光学像差。AO与2PFM相结合,将校正的相位模式应用于物镜后瞳平面(back pupil plane)的激发波前,可以实现衍射极限性能,并且可以在大脑表面以下数百微米处解析突触。大脑的在体成像也需要高时间分辨率,对于大脑内的功能成像,需要 ...
技术背景:在双光子吸收过程中,光场会在基态和量子系统(例如分子)的相关激发态之间产生一个状态。这种诱导状态,通常被称为虚拟态(在量子光学中也称为修饰状态)。这种状态确实存在,但前提是光场开启。使用激光脉冲时,虚拟状态寿命由脉冲持续时间决定。直观上,第一个光子诱导电子从基态跃迁到虚拟态,第二个光子诱导跃迁到激发态。双光子吸收过程在多光子光学显微镜和多光子光学光刻中至关重要,这两种应用都已商业化多年。多光子光学光刻已成为制造从纳米级到微米级的三维(3D)结构的成熟方法。在3D光学光刻(也称为直接激光写入或 3D 激光纳米打印)中,双光子吸收导致光引发剂跃迁率的缩放,因此曝光剂量与光强度的平方成正比 ...
两步吸收代替双光子吸收简介:作为通过双光子吸收进行高分辨率制造的替代方法,研究人员展示了一种使用廉价光源的两步吸收过程。作者:Vincent Hahn,Tobias Messer... Martin Wegener原文链接: https://www.nature.com/articles/s41566-021-00906-8关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、 ...
极管中干涉式双光子吸收自相关 (TPAA) 的方法以及用于一阶、二阶和三阶色散的自相关测量的示例。干涉测量自相关方法的优势在于它们易于实现并且适用于优化大多数多光子成像应用的激发效率。然而,就其无法提取实际脉冲形状和相位而言,使得它们从根本上受到限制,因此,通常假设高斯或双曲正割 (sech) 整形函数。针对这种情况,已经开发出一系列与显微镜非常匹配的更复杂的脉冲测量技术;即频率分辨光开关 (FROG) 和用于直接电场重建的光谱相位干涉测量法 (SPIDER) ,它们能够提供额外的信息。此外,多光子脉冲内干涉相位扫描 (MIIPS)不仅可以测量脉冲,还可以对其进行整形。有许多论文详细介绍了使用 ...
子成像是利用双光子吸收的一种成像技术,双光子吸收是指原子或分子在时间和空间上同时吸收两个光子而跃迁到高能级的现象。因此反应概率远小于一般的单光子吸收,它的几率正比于光强度的平方。神经元钙成像(calcium imaging)技术的原理就是借助钙离子浓度与神经元活动之间的严格对应关系,利用特殊的荧光染料或者蛋白质荧光探针(钙离子指示剂,calcium indicator),将神经元当中的钙离子浓度通过双光子吸收激发的荧光强度表征出来,从而达到检测神经元活动的目的。美国Meadowlark Optics公司专注于模拟寻找纯相位空间光调制器的设计、开发和制造,有40多年的历史,该公司空间光调制器产品 ...
打印,基于“双光子吸收效应”, 可以将反应区域限制在焦点附近较小的位置(称之为“体元”),通过纳米级精密移动台,使得该焦点在物质内移动,焦点经过的位置,光敏物质发生变性、固化,因此可以打印任意形状的3D物体。双光子聚合激光直写技术摒弃了传统增材制造(Additive Manufacturing)层层叠加的方法,使得层与层之间的精度大大提高,消除了“台阶效应”,使得我们可以制造低粗糙度、高精度的器件,如各种光学元件、维纳尺度的结构器件等。基于双光子聚合激光直写技术的microFAB-3D完全适用于高分辨率3D打印,结合合适的光敏材料,“体元”直径可小至67nm,有时甚至可以更小。结合我们专有的软 ...
线性成像(如双光子吸收或二次谐波成像)成为可能。在现有的显微镜上添加衍射SLM是一个简单的过程。SLM是一个单独的小元件,它被放置在光路中,几乎可以被放置在物镜前的任何一点,但理想情况下,它应该位于与物镜后孔径光学共轭的平面上。通过简单的望远镜将SLM放置在与现有扫描仪(即振镜)共轭的平面上,现有的激光扫描系统可以很容易地修改为与衍射SLM一起工作。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感 ...
布里渊散射和双光子吸收等现象。其中非线性频率变换是一个重要研究方向,在光通信、激光器、光谱学以及成像中都非常重要,并且由于三阶非线性效应相比二阶的要弱上几个数量级,更难观测到,因此在这篇文章中,我们聚焦于那些基于二阶非线性频率转换过程。二次谐波(倍频)SHG倍频是二阶非线性过程中zui常见的应用,顾名思义,是将两个频率相同为f1的光子和非线性晶体作用,产生二次谐波,即频率为两倍2f1的光子。从波长来看即是减半,所以常用于将红外波段的激光高效倍频为可见和近红外波段。应用:产生绿光和蓝光、科研和医疗、频率稳定、荧光显微镜和频 SFG和频与倍频类似,是将两个频率不同的光波(f1与f2)输入到非线性晶 ...
或 投递简历至: hr@auniontech.com