饱和吸收光谱简介饱和吸收光谱是一种获得消除多普勒展宽的激光光谱方法,在1981年诺贝尔物理学奖中被提及,随后被应用于激光冷却捕获原子和玻色-爱因斯坦凝聚实验中,广泛应用于激光频率标准,可以用于半导体激光器的稳频,以及激光冷却等方面。当激光器输出的激光经过原子蒸气后,会发生吸收现象,当光子的频率和原子的超精细能级共振时,会发生强烈的共振吸收。失谐为0时,吸收z大。原子静止时,吸收峰的半高宽与原子跃迁线的自然线宽相当,约MHz量级,并且原子的能级十分稳定,因此共振吸收峰能够作为理想的激光稳频基准频率。87Rb原子的超精细能级结构但是由于在室温下原子进行强烈的热运动,运动速度在一个很大的范围内分布, ...
集体的中红外吸收光谱电磁波谱2 ~ 25µm光谱范围对应的MIR区域与分子振动能重合。当MIR光通过样品时,分子间键通过吸收与基态和激发态之差相同的能量而被激发到更高的振动态。这使得在该区域使用指纹吸收光谱检测未知分析物以检测特定键。傅里叶变换红外光谱(FTIR)通常用于生物化学物质的分析,以确定分析信息。但是,由于MIR中吸水性强,通常不能使用长度超过10-20µm的比皿,较窄的比皿容易被真实样品堵塞。利用衰减全反射(ATR)光谱与FTIR相结合的方法克服了这一问题。然而,传统ATR元件中的离散反射次数受到严重限制,而使用光波导(本质上是更薄的ATR元件)大大增加了单位长度的有效反射次数,从 ...
光工作物质的吸收光谱相匹配。以红宝石激光器为例,其激励光源是螺旋形脉冲氙灯,工作物质是红宝石棒。氙灯在绿色和蓝色光谱段有较强光输出,正好能与红宝石的吸收光谱对应起来,最终使红宝石棒产生大量激发态(亚稳态)的原子,实现粒子数反转。而作为工作物质的红宝石则需要制作成圆柱形棒状体,两个端面平行并镀银,使之一端成为100%的全反射面,另一端成为90%的部分反射面(可看做光学谐振腔)。大部分的激光器都是由泵浦源、工作物质和光学谐振腔构成的。光学谐振腔通常由相隔一定距离的两块反射镜组成(一块为全反射面、一块为部分反射面),这样做可以令入射光源在谐振腔内来回振荡,尽可能多地接触工作物质,使工作物内原子受激辐 ...
些结构,检测吸收光谱。太赫兹系统还有一个额外的好处,能够更深入渗透一种材料或“透视”外部层来捕捉信号。但这些系统依赖于昂贵的激光光源,而探测器性能、可用性和费用的限制限制了使用这种技术的潜在灵敏度、分辨率和经济性。此外,它们相当窄的光谱范围(只有3-6THz)限制了其对许多材料进行完整可靠的化学鉴定的能力。“太赫兹拉曼”将拉曼光谱从指纹区域扩展到太赫兹区域,如下图1,为化学组成数据增加对分子和分子间结构的重要见解。低频拉曼/太赫兹光谱可大大提高对材料结构和化学的分化和分析,从而提高准确性、灵敏度、科学分析或法医分析,包括爆炸物、毒品、药品、生物组织、聚合物和有害物质,都可以从这种扩展的光谱信息 ...
的电子能级(吸收光谱),(3)振动能级重排的效率(荧光寿命),(4)弛张回到基态电子能级(斯托克斯位移),(5)基态(发射光谱)内振动能级的总体。荧光团由吸收光谱、荧光寿命、斯托克斯位移和发射光谱表征。按照惯例,荧光寿命τ定义为荧光团处于激发态的平均时间。在此区间内,强度I(t)减小到1/e或其原始值的36.8%。t时刻的衰变强度由样本中所有物种i的一级动力学方程求和得到。其中α是指前因子或指数函数的幅值。多指数混合种的平均寿命(τm)是各种寿命(τi)与各种贡献(αi)的加权之和。另外,在t时刻被激发的分子数为其中n(t)是t时刻处于激发态的分子数。在荧光寿命的检测中,样品由一个短的激励脉冲 ...
cm−3的吸收光谱。α0表示非极化情况下的吸收。此外,跃迁必须遵守砷化镓中的偶极子选择规则。因此,两个圆形光模式只能耦合到某些过渡。例如,左圆偏振光可以激发从重空穴带到自旋向下子带的跃迁,但不能激发从重空穴带到自旋向上子带的跃迁。综上所述,导带的自旋不平衡结合光学选择规则,导致左右圆偏振光的吸收光谱如图1右侧所示。计算曲线清楚地揭示了两种圆光模式吸收系数的光谱依赖性不同,即系统对左右圆偏振光表现出不同的响应。这表明,导带中的自旋极化诱导了圆形双折射,因此,两种圆形光模式在通过半导体传播时经历了不同的相移,这导致入射线偏振光的偏振面旋转。图2.4.2 K时n↑= 1.5·1017 cm−3和n ...
振光的x射线吸收光谱与材料中特定元素的自旋和轨道矩联系起来。因此,可以获得元素的特定信息,这是超出价带MO光谱的巨大优势。尽管在推导求和规则时涉及了大量的近似,但它们在实践中是令人信服的。获得自旋或轨道矩的精度约为10%至20%,但有时只有50%。Altarelli(1997)讨论了各种x射线MO效应。在标准MO克尔实验中检测到的反射光的频率与入射光的频率相同。然而,可能存在一小部分以双倍频率反射的光。这被称为二次谐波产生,或者,更一般地,作为非线性光学。对于中心对称介质,当反演对称性被破坏时,会产生二次谐波。Pan等人(1989)预测,在磁性表面层的情况下,二次谐波反射中会出现MO Kerr ...
变换红外反射吸收光谱(FT-IRRAS)相比,IRSE在测定高反射率波长区域内的介电函数(低至单分子层厚度)方面具有优势。另外,IRSE表征比FT-IRRAS表征有更多的实验参数,可以获取薄膜样品的更多信息。图1-3为利用椭偏仪在位监控微晶mc-Si:H薄膜在ZnO衬底的生长。生长模型为岛状生长,因此在生长过程中,表面较为粗糙,通过模型构建可以获取薄膜表面粗糙度随时间演变和生长速率和生长模式。图1-3薄膜生长过程中表面的粗糙度随着时间的演变1.3.2监测颗粒吸附对于颗粒或者大分子层的吸附,椭偏仪可以检测到其光学常数的变化,并且利用有效介质模型提取颗粒的覆盖率信息等。椭偏仪被广泛应用于生物大分子 ...
的连续可见光吸收光谱出现的峰位十分接近,相对于文献其峰位发生蓝移且两峰值存在差异,这可能是由于Au薄膜上溶液和ITO带来的影响。图4-3沉积0s时(a)Psi和Delta(b)R随波长变化2.2装置对应的光学常数图4-4(a)是沉积之前测试得到的n、k随波长的变化图,从图中可以看到短波段图线较平滑,长波段数据波动大。n值在500nm附近出现峰,k值在600nm附近出现峰。500nm处n值存在跃迁,说明该处附近可能有等离子体共振峰的出现。图4-4(b)是沉积之前测试得到的、,从图中可以看到短波段数据曲线平滑,长波段数据波动大。、均在500nm附近出现峰,这归因于Au表面等离子体共振。图4-4沉积 ...
或 投递简历至: hr@auniontech.com