像物镜、孔径光阑和光强探测器组成。经过准直的平行光经分光镜后通过微透镜阵列成像,当在微透镜阵列的焦距放置反射镜时,光线以光轴为对称轴返回,由于光强探测器的像面和孔径光阑位于成像物镜的焦面上,此时光强最大;同理,调节反射镜位置,当反射镜位于焦距的一半位置时,光线经过反射镜和顶点的两次反射返回并成像在探测器上即光强计再次出现极大值,通过测量两次成像的距离即可完成焦距的测量。该方法测量系统简单,操作简便;但只能完成微透镜阵列所有子透镜单元的平均焦距测量,不能对应测量各个子透镜单元的焦距,对评价微透镜阵列的加工质量存在较大的局限。4,CCD探测法CCD测试系统示意图和系统原理分别如图4-1和4-2所示 ...
人不同孔径的光阑,当光阑使激光功率减小了5%时,所用光阑的孔径不应大于其后光学元件口径的0.8倍。6.2 测试环境要求放置被测激光器和测量系统的测试台的稳定性应高于被测激光器的稳定性。需采取隔震、减噪和控温等措施,保证外界因素或系统误差对测量结果的误差影响不超过10%。这些措施包括对测试设备的机械和声响隔振、对实验室和激光器冷却系统(由厂家规定)控温,对外界光电噪声的屏蔽和使用低噪声的电气装置等。6.3探测器系统在测试光束的指向和位置稳定性时,测量光强分布的一阶矩应符合ISO11146:1999的规定。只有当被测光束在每次测试中的光强分布不发生变化时才可使用如光电二极管、四象限探测器等简单探测 ...
D图像。孔径光阑放置在双胶合透镜的傅里叶平面,阻拦高阶衍射,其开口半径设置为与蓝色光束的一阶衍射范围相匹配。全息图的接收用目镜和相机组合来承担。实验结果:(1)所采用卷积神经网络具有极高的内存效率(低于 620 KB),并且在单个消费级图形处理单元上以 60 赫兹的速度运行,分辨率为1,920 × 1,080像素。(2)利用低功耗的设备端人工智能加速芯片,训练得到的CNN还可以在移动(1.1Hz 的 iPhone 11 Pro和2.2Hz的Google Edge TPU)设备上交互运行。(3)所提方法也对超表面设计、基于光镊和声镊的显微操作、全息显微镜和单次曝光体积3D打印等也有帮助。参考文献 ...
L5和4mm光阑(iris)一起滤掉高阶衍射光。所用LED为880mW白光LED,匹配全带宽为10nm的,中心波长分别为633、532、460nm的滤光片。LED耦合进纤芯直径200um的多模光纤输出。SLED模组(EXALOS RGB-SLED engines)单模光纤输出,z大输出功率5mW,中心波长分别为635、510、450nm。实验结果:参考文献:Yifan PengSuyeon ChoiJonghyun KimGordon Wetzstein,"Speckle-free holography with partially coherent light sources an ...
客户只需要用光阑将零级光滤掉,只让一级光通过即可。b)叠加菲涅尔透镜MLO公司的调制器控制软件提供生成任意焦距菲涅尔透镜的功能,用户可以将全息图与该菲涅尔灰度图进行叠加,从而零级光与衍射光的焦平面会发生错位,零级光在衍射光的焦平面上会发散掉,从而减小零级光的影响。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振态准确性为了使用SLM作为相位调制器,入射偏振必须是线性的,并且与LC分子对齐。为了确保入射光的偏振是线性的,建议在激光光源后放置一个偏振器。为了确保偏振与LC分子对齐,建议在偏振器和SLM之间放置半波片,通过半波片的旋转可以将0级光调到zui小。2)光路中添加使用0阶块(0th ...
函数发生器和光阑控制激光的时序开关输出(目的是降低单次照射时间至~1ms,从而减小散斑拖影现像。如果相机曝光时间能够同样足够低,就不用控制光源的开关)。样品表面平均激光功率为3.5mW。活体成像时散斑图像被20X/0.4物镜采集,经线偏振片提高散斑对比度,最后成像在SCMOS上,其最大采集帧率190fps。视频1:OSIV在光血栓形成中风小鼠模型中的应用参考文献:Muhammad Mohsin Qureshi, Yan Liu, Khuong Duy Mac, Minsung Kim, Abdul Mohaimen Safi, and Euiheon Chung, "Quantita ...
射镜上的孔径光阑(洞)到达衍射光栅(参见图2)。光栅把光按波长展开,就像棱镜把白色的光转换成彩虹一样。一个宽带光,例如太阳光是由很多不同波长的光组成的。当衍射光栅暴露在这种类型的光下,它将从多角度反射光线产生了一个分散的光谱就像一道彩虹。类似地,如果光栅接触了一种单一光源,比如一束激光,那么只有激光的特定波长的光会被反射。图1 PR-788光谱测量范围对于PR-655、PR-670和PR-788测量波长范围是380纳米(nm)(紫色)到780nm(深红色)-即电磁波的可见光谱段 (参见图1)。衍射光谱到达CCD探测器;PR-655探测器是128位的线性探测器,PR-670探测器是256位的线性 ...
定要使其弯向光阑,以使主光线的偏角或ip角尽量小,以減少轴外像差。反之,背向光阑的面只能有较小的相对孔径。三、像差不可能校正到理想程度,Z后的像差应有合理的匹配。这主要是指:轴上点像差与各个视场的轴外像差要尽可能一致,以便能在轴向离焦时使像质同时有所改善;轴上点或近轴点的像差与轴外点的像差不要有太大的差别,使整个视场内的像质比较均匀,至少应使0.7视场范圃内的像质比较均匀。为确保0.7视场内有较好的质量,必要时宁愿放弃全视场的像质,让它有更大的像差。因为在 0.7视场以外以非成像的主要区域,当画幅为矩形时(如照相底片),此区域仅是像面一角,其像质的相对重要性可以较低些。四、挑选对像差变化灵敏、 ...
频谱面上放置光阑,以控制输入面与频谱面的大小,而且不能使傅里叶变换透镜本身的外径起拦光作用。输入面和频谱面中的任一个都可以视为孔径光阑,而另一个视为视场光阑,与此对应有两种处理方法,一种是物在无穷远,孔阑在前焦面,为像方远心光路;另一种是物在前焦面,孔阑是后焦面,为物方远心光路。两种处理方法的几何光路与Z终效果完全相同。无论用何种方法都必须同时控制物面像差和光阑像差,即对两对共轭面校正像差。若以输入面为孔径光阑来考虑,假设m级衍射光与光轴的夹角为,则按照衍射理论上式中,d为光栅常数,m为衍射级次。为使各谱线的像高成线性分布,像高应该有:式1由像差理论知,平行于光轴入(出)射的光线,正弦条件为或 ...
影。在系统的光阑面(j=p),我们将有在这个平面中,x-边缘光线高度,x-主光线高度。我们得到对于这条光线,这里是分数孔径ρ在x-z对称平面上的投影。因此,我们发现了比例常数,这是整个系统的常数。对于任意曲面j,之前的方程可变成类似地,我们可以找到比例常数,。对于任意曲面j,之前的方程可变成我们认识到和实际上是这个任意变形近轴光线的归一化对象和孔径坐标。上四式将作为畸变系统畸变系数初始推导的基础。这些方程可以这样理解:1)在变形系统中,任意变形近轴光线(倾斜或不倾斜)的光线追迹数据可以由两个相关RSOS中四个已知的不倾斜的近轴边缘和主光线追迹数据的线性组合而成。2)此外,比例常数是所研究的任意 ...
或 投递简历至: hr@auniontech.com