线敏感的二维电荷耦合器件(CCD)探测器上。它是一个背面照明的薄CCD。目前的CCD芯片像素为2,048×2,048,像素尺寸为13.5 × 13.5µm2。放大倍率的典型值在1500到2000之间,每个图像的视场约为10 μ m。根据可用光子的通量,对于具有强对比度的样品,每张图像的照明时间约为1-2秒。图2.在Fe L3边缘轨道平面上下圆偏振处观察了非晶GdFe样品的磁畴结构,显示磁对比的反转。为了通过XMCD获得磁对比度,通过CZP前面的一个孔来选择轨道外发射的圆偏振X射线,该孔掩盖了入射辐射的上半部分或下半部分。图2显示了在706 eV的Fe L3边缘记录的非晶GdFe体系的磁畴结构, ...
数字CCD(电荷耦合器件)或CMOS(互补金属氧化物半导体)相机直接提供数字化数据流,而视频速率CCD相机的模拟输出必须通过模数转换器进行转换。如果数字CCD相机的帧速率足够快(约10赫兹),可以实现实时成像,那么它就适合克尔显微镜。CCD芯片的冷却提高了信噪比,图像增强器可以进一步提高灵敏度。在实际应用中,需要对图像亮度进行适当调整,以满足摄像机的动态范围。增大分析仪角度或将光圈开到消光交叉的宽度以外,从而增大背景强度,是实现大信噪比的实用手段。可能的对比度损失并不是一个严重的问题,因为对比度可以通过电子差分成像来增强。为了创建差分图像,首先通过对相同样本状态的重复图像求和来存储平均参考图像 ...
使用基于硅的电荷耦合器件(Si CCD)相机获取。布拉格光栅技术设用于全局成像,允许在显微镜下逐波长获取整个视野内的信号。传统的荧光(PL)成像设置基于逐点或线扫描技术,需要重构图像。使用这些成像技术时,仅照亮样品的一小部分(使用共聚焦逐点设置时约为1μm2),周围区域保持黑暗,导致载流子向这些区域横向扩散。全局照明避免了由于局部照明引起的载流子复合。使用全局成像时生成的等势体防止了电荷向更暗区域扩散。用于全局成像模式的均匀照明使得在现实条件下进行PL实验成为可能,z低可达一个相当于太阳功率密度。预计仪器激发强度波动可达13%。激发辐照度的变化将带来PL发射的比例变化,使这种效应易于识别。此外 ...
超快速和强化电荷耦合器件(iccd),带有或没有克尔门。从本质上讲,这些设备需要探测器冷却,因此非常复杂和笨重(见表1)。自世纪之交以来,互补金属氧化物半导体(CMOS)单光子雪崩二极管(SPAD)阵列探测器已经商业化。CMOS spad具有显著减少上述缺点的优点。此外,通常不需要冷却探测器,这进一步降低了光谱仪的复杂性、成本和整体尺寸。目前的商用门控拉曼器件是便携式桌面大小的装置,适用于过程工业监测目的。表1时间分辨(TR)门控通常可以互换使用。然而,虽然门控拉曼主要侧重于抑制荧光和其他干扰,从而在脉冲激发源的宽度或部分宽度上重复一个测量周期,但在研究瞬态过程方面,热重法也可用于TR测量。由 ...
或 投递简历至: hr@auniontech.com