展示全部
工业级RGB彩色高速DLP光学投影模组
工业级高速DLP光机引擎
evice”数字微镜器件,是一种基于MEMS技术的微反射镜阵列单元,单元数量可达百万量级,是一种电子输入、光学输出的微机电系统 (MEMS),开发人员可借助该系统执行高速、高效及可靠的空间光调制。图1:DMD单个工作单元图示1、何为无掩模光刻?无掩膜光刻即不采用光刻掩模板的光刻技术。在传统光刻过程中,需要采用光学照射掩模版的方式将图案转移到掩模版上;而在无掩模光刻中,对目标图案的转印不需要掩模版,而是通过电子束或光学的方式直接在基片上制作出所需要的图案,这种方式避免了传统方式制作掩模版效率低、分辨率低、成本高的缺点。2、何为DMD无掩模光刻?DMD无掩模光刻是光学无掩模光刻技术的一种,该技术使 ...
包括毛玻璃、数字微镜器件、LED阵列,最快刷新频率可以达到100MHz量级。近年来出现的波导相位调制集成光路等技术使得光源调制方式实现了固态化(见图2)。本课题组也自主研制了大功率、刷新频率可达几十kHz的高性能可编程赝热光源,对一定距离的室外运动目标实现了准实时成像。在成像算法方面,压缩感知和机器学习大幅减少了成像所需采样次数,提升了关联成像速度。同时,为了实现运动物体的实时成像,减少算法的耗时也是值得关注的问题。图2硅基芯片耦合多模光纤的二维赝热光源及成像装置示意图其次,根据实际场景优化成像策略,也可以提升关联成像速度。通过设计照明方式,关联成像获取物体信息的方式比传统成像更加灵活。现有方 ...
DMD在双光子激发显微镜中应用时间聚焦是一种高度并行的激光激发技术,广泛应用于细胞动态成像、光遗传学和微制造等领域。虽然时间聚焦多光子激发显微镜能在宽视场成像,但在轴向分辨率方面传统点扫描多光子显微技术更占优势。一种改进方式是采用线扫描的工作方式,将光线聚焦到线中来对激发平面进行图形化,提高轴向分辨率。而使用DMD可以有效实现对光的快速空间调制,在激发面形成动态图样。同时由于DMD的图样可编程性,可以控制线宽,也可以同时照明多条线,并快速扫过样品。这有利于实际实验中平衡照明区域和轴向分辨率的不同需求。上图为实验装置示意图。激光束经过反射光栅衍射,通过两个凸透镜将经过衍射的光束投射在DMD的微镜 ...
从历史上看,数字微镜器件(DMD)技术的主要应用一直是在显示系统中,在过去数年中,DLP嵌入式用户正在探索许多新的应用。其中许多应用都考虑将激光器与 DMD结合使用。激光使用连续和脉冲模式操作。脉冲操作的众多优点之一是,在脉冲期间可以达到非常高的峰值功率,并且平均功耗相对较低。这种工作模式可实现各种烧蚀模式(热和非热),适用于沉积、医疗和其他应用。过去依据稳态热模型来预测DMD阵列和像素的温度,并以模型为基础形成Vialux的DMD数据手册上最大照明功率密度规格。然而在考虑脉冲激光照明条件时,DMD的像素瞬态温度不能被忽视。大温差和高温会降低DMD的半导体器件使用寿命。即使极短时间高温,在多周 ...
《DMD的激光功率处理》白皮书介绍(二)《《DMD的激光功率处理》白皮书介绍(一)》中提到DMD在不断拓展应用场景时面临许多挑战。而在脉冲激光系统中应用时,激光功率和其造成的数字微镜升温问题尤为重要。我们需要知道其中制约关系,防止在实际使用中损坏DMD器件。前文介绍了单个DMD微镜在不同脉冲激光条件下升温降温过程,并建立描述这一过程的物理模型。接下来的内容是将单个微镜的升温过程置于微镜阵列和基底环境中,以求得在DMD使用场景下应当遵循的一般使用条件。前文模型仅预测单像素温度上升模式,为确定总像素温度,必须知道阵列温度。阵列温度取决于特定的封装。在确定的输入光能量时,阵列温度一般与封装背面的陶瓷 ...
激光器可采用数字微镜器件(DMD)作为滤波器。与Mach-Zehnder干涉仪、Sagnac滤波器和光纤布拉格光栅相比,DMD具有高速调谐和不同波长之间灵活切换的优势。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
本文介绍一种数字微镜器件(DMD)全息显示技术。系统利用激光二极管(LD)阵列,应用结构照明(SI)来扩展DMD的小衍射角。为了消除SI的衍射噪声,在傅里叶滤波器中采用有源滤波器阵列,并将其与LD阵列同步。利用DMD的快速运行特性,通过时域复用降低散斑噪声。此系统可在大视角下观察到无斑点噪声的全息图。数字微镜器件DMD全息显示的另一个主要问题是相干光源的散斑噪声。散斑是一种由散射相干光产生的随机干涉图样,它会严重降低全息图的质量。此外,高强度的相干斑干涉可以损害人类的视觉系统。通过对不同随机相位图生成的全息图进行时域复用处理可以实现:通过叠加具有不相关散斑图的多个全息图来抑制散斑噪声。这种方法 ...
物体。后来,数字微镜器件(DMD)被用作提高照明速度的主要器件。使用 DMD,在紧凑的 SPH 系统中同时实现了快速荧光成像和相位成像。人们还探索了一些改进以提高 SPH 的性能,包括为压缩感知选择各种照明模式的适当顺序以及开发同轴干涉测量以提高鲁棒性。当前不足:(1)当前实现全息固有的相位步进(phase stepping)方法导致成像速度慢,从而通量低。(2)Lee全息图和超像素法都是以独立像素为代价实现的,因此减少了重建图像中有效像素的数量。(3)几乎没有报道将 SPI/SPH 应用于生物组织中的微观结构成像,这主要是由于成像系统的性能有限和生物样品的散射对比度相对较低。文章创新点:基于 ...
基于DMD的320nm以下紫外光应用可靠性研究介绍许多大学、研究中心和终端设备制造商已经发表了多篇关于使用DMD的无掩模光刻的论文。利用DMD的生产系统已经由多家原始设备制造商推出。 通常,这些工具选择使用多个中到高分辨率DMD以实现高数据吞吐量,并在365-410nm范围内工作。典型工作条件是在DMD上的3-5W / cm2 照明,温度保持在30°C以下。 基于这些条件,制造商已经能够将DMD系统稳定运行。设备在 UV-A 范围内的 3.4W/cm2 、25°C条件下始终表现出超过 3000 小时的运行时间。生产合格的UV DMD中使用的标准UV窗口具有320-400nm的可用透射率区间。为 ...
开发出反射式数字微镜器件(DMD)被广泛应用于投影仪中。这一系列技术支持下,人们的日常生活更加丰富。后来随着技术发展,出现了微机电系统(MEMS)和新型电光材料等,也出现了新型空间光调制器,例如液晶空间光调制器(LC-SLM)、光栅光阀(GLV)等。1、液晶显示器LCD液晶是一种介于液态和固态之间的材料,具有良好的电光效应性能。LCD 利用了液晶双折射效应和扭曲向列效应构成的混合场效应。在扭曲向列液晶盒两侧加入偏振方向相互平行的偏振片,就构成了单个LCD像素单元。当没有对液晶盒施加电压时,入射光经过起偏器成为线偏振光,经过液晶时偏振方向随着液晶分子取向旋转,Z后偏振方向与检偏器相互垂直,此时该 ...
或 投递简历至: hr@auniontech.com