L) 来选择激发波长。为了使 OPD 表现出快速响应时间,快速淬灭激子很重要。在这方面,有两个因素需要考虑:受体材料内的激子猝灭和在异质结中从供体到受体的电荷载流子转移。对于第1点,PC71BM 薄膜的单重态激子寿命τS1为10.72 ns,而 eh-IDTBR 薄膜的τS1短得多(6.39 ns)。 这是由于PC71BM有更多的缺陷位点,延迟了PL淬火。对于第二点,测量了eh-IDTBR和PC71BM的TCSPC。光敏层中的单重态激子衰减与快速扩散到供体-受体界面有关,而长寿命组分与电荷分离后的电荷复合有关。此外,PBDTTT-EFT 和 PC71BM 混合物的τCT比PBDTTT-EFT和 ...
念相碰撞,则激发出各种各样用于解决大规模(即大数据量)相位重建问题的方法。本文的作者提出的大规模相位复原方法得到业界巨佬Gabriel Popescu(相关文章,见传送门3,4.其SLIM一文是Phi Optics Inc公司SLIM的原型 )的认可,并亲自在Light: Science & Applications volume上撰文介绍。当前不足:针对计算相位成像,尽管已有各种相位复原方法,但是都需要在低计算复杂度、测量噪声鲁棒性和不同成像模态强泛化能力之间互相妥协。难以应对大规模的相位复原。文章创新点:基于此,北京理工大学的Xuyang Chang(第一作者)Liheng Bia ...
反应。非线性激发固化焦点处的光敏树脂,而其它区域不受影响。b.三维聚焦锁定。在明场照明下,基准点产生干涉图案(下),该干涉图案被独立的相机以高帧率记录。衍射图案的变化用于监测样品所经历的运动。实验结果:图2:用于3D dSTORM成像、无监督数据采集和活细胞单分子跟踪的定制基准实时亚纳米聚焦和动态聚焦参考文献:Coelho, S., Baek, J., Walsh, J. et al. Direct-laser writing for subnanometer focusing and single-molecule imaging. Nat Commun 13, 647 (2022).DOI ...
的限制。空间激发多路复用改进了三维采样,但广泛的多路复用通过背景荧光的积累降低了信噪比(SNR),并加剧了大脑发热。虽然随机存取多光子显微镜允许在三个维度上快速光学访问神经元目标,但该方法在记录行为动物(behaving animals)时受到运动伪影的挑战。随机存取多光子(random-access multiphoton, RAMP)显微镜以不连续的三维栅格扫描中的一系列不相交的感兴趣点 (POI) 为目标,从而截断空间采样以在时域中加速采样。三维RAMP显微镜已使用声光偏转器(acousto-optic deflector, AOD) 实现,它通过扫描光束的倾斜和离焦相位调制来控制激发焦 ...
G)、双光子激发荧光(two-photon excited fluorescence,TPEF)的多模非线性显微镜,可以实现离体生物样本的分子组成和形态信息的高灵敏和高特异性无创无标记检测(区分恶性组织和良性0组织)。当前不足:完成多模非线性显微镜有以下挑战:(1) 光纤耦合的高功率超快激光源(具有风冷、坚固、紧凑、便携特性);(2) 在长距离上的使用光纤进行超短脉冲激光传输和信号采集,要求具有低损耗;(3) 置于内窥镜头端部成像用的超紧凑、快速、精确的扫描仪;(4) 高性能小型化高数值孔径的内窥显微物镜,在双波段进行校正(因为相干拉曼成像使用两个光谱不一样的激光束)。文章创新点:基于此,GR ...
差引起)。这激发了空间变化解卷积方法的应用。但是目前的大多数空间变化解卷积算法计算量大、计算慢,不适于实时图像重建。而且,它们重建的图像质量也不佳,这种现像在具有大空间范围PSF的高度多路复用成像系统、选择不当的先验等情况下更明显。虽然已有基于深度学习的解卷积方法被证明可以提高图像质量和重建速度,但是迄今为止,这些深度学习方法依赖于平移不变PSF近似,且不能很好的推广到具有视场变化像差的光学系统。快速迭代收敛阈值算法:fast iterative shrinkage-thresholding algorithm(FISTA)技术要点:基于此,美国加州大学伯克利分校的Kyrollos Yanny ...
性对比机制将激发限制在聚焦焦斑的体积内。这可以实现全场检测——消除共焦针孔——非线性信号由非成像探测器(例如光电倍增管)收集和量化。由于已知信号源自于焦点,因此所有收集的非线性光都可以归因于样本中的该点。为了形成一幅图像,通过扫描聚焦于样本中的焦点来量化每个体素的非线性信号强度。一个简单并且直接的方法是,在激光焦点保持静止的情况下扫描样本来形成图像。但是样品保持静止,扫描激光的方法通常更受欢迎,尽管它更难以实施,但是这种方案具有卓越的图像采集速度和样品稳定性。激光扫描的方式要求在保持以物镜后背孔径为中心的情况下,光束的入射角发生变化;这样可以防止渐晕。因此,激光扫描过程不仅决定了FOV(fie ...
子成像应用的激发效率。然而,就其无法提取实际脉冲形状和相位而言,使得它们从根本上受到限制,因此,通常假设高斯或双曲正割 (sech) 整形函数。针对这种情况,已经开发出一系列与显微镜非常匹配的更复杂的脉冲测量技术;即频率分辨光开关 (FROG) 和用于直接电场重建的光谱相位干涉测量法 (SPIDER) ,它们能够提供额外的信息。此外,多光子脉冲内干涉相位扫描 (MIIPS)不仅可以测量脉冲,还可以对其进行整形。有许多论文详细介绍了使用执行自相关作为衡量显微镜系统双光子成像性能的效果。4.2a 干涉自相关自相关测量是通过在其自身上扫描相同的脉冲副本来进行的。这是通过将脉冲传播通过干涉仪来实现的, ...
补偿?对于随激发强度非线性缩放的成像过程,色散补偿似乎可以明显提高激发效率(即产生非线性信号光子的能力)。然而,评估色散补偿系统对于信号光子产生的净影响是非常重要的。为了优化显微镜的激发效率,保持衍射极限焦斑,即该焦斑在时间上是傅里叶限制(脉宽的下限)的。正如球差会在空间上扩大聚焦体积并降低激发效率一样,扩束镜、扫描光学系统和显微镜物镜中的色散会延长脉冲持续时间,并降低脉冲质量。有多种策略可用于对这些光学器件的色散进行预补偿,以确保傅里叶变换极限或接近傅里叶限制的聚焦脉冲。值得注意的是,应考虑补偿方案本身的效率,以确保最终图像中有可实现的增益。例如,如果我们假设一个简单的方波脉冲形状,平均检测 ...
生的,并且与激发激光具有相同的波长。一小部分被散射的光子是由称为拉曼散射的非弹性散射过程产生的。虽然与瑞利散射光子相比,光子的数量相对较少,但这些光子的波长和强度携带有关特定化学键存在的定性和定量信息。在给定的拉曼光谱中,出现在特定波数位置的一组峰可以被描述为识别特定化学物质的“指纹”,同时,峰的高度可以与这种化学物质的浓度有关。多组分分析是拉曼光谱的应用之一。在过去的二十年里,许多研究小组提出了光学拉曼装置,专门设计来提高该技术测量多组分浓度的能力。这些系统是专门设计的,以减少整体方法的错误,这反过来允许增加所调查的混合物中分析物的数量,以及降低可测量的特定化学品的浓度限制。图1在这类的第1 ...
或 投递简历至: hr@auniontech.com