。显微物镜有折射式、反射式和折反射式三类,但绝大多数实用的物镜是折射式的。折射式显微物镜又可根据质量要求的不同而有不同的类型。一、消色差物镜这是应用zui广泛的一类物镜,一般只要对轴上点校正好色差和球差,并使之满足正弦条件而达到对近轴点消彗差即可,因此只能用于中低档的普及型显微镜中作一般观察之用。下面几种典型的消色差物镜,由于其结构型式有利于带球差的校正,仍为人们所广泛采用。1)单组双胶合低倍物镜 见图下图1,这是可能实现上述像差要求的zui简单结构,能承担的zui大相对孔径为1:3,因此数值孔径只能达0.1~0.15,相应的倍率为3~6倍。图12)里斯特型中倍物镜 如下图2所示,由二组双胶合 ...
向沿x轴,双折射器光轴方位角为Ω,延迟为φ,检偏器透振方向为θ方向,则系统Jones矩阵可表示为:若以强度为的自然光入射,则系统出射光强可表示为:因此,测得Ω、θ、I(λ)及值即可计算出该波长所对应的延迟值。这种方法便于测量不同波长对应的位相延迟,若辅以精密的单色仪便可以方便快捷地获得大量数据。但考虑到系统表面反射及吸收损失,不易准确测得,所以该方法只适于找到光强随波长变化规律而不易准确测得延迟值。然而,对λ/2波片情况则较为特殊,这里做进一步分析,上式对的一阶导数为:当φ=π时可见光谱扫描曲线中,λ/2波片在相应波长处光强值为zui大或zui小,所以仅从曲线极值所在位置便可精确确定波片在该波 ...
,我们利用双折射多路复用[40-42]或空间复用[43,44]演示了一组自由运行固态单腔室系统,使用所有常见光学元件,具有超低的相对时序噪声性能。 [43]中报告的系统可以实现子周期相对时序抖动([20 Hz,100 kHz]积分范围),从而超越了ASOPS系统在泵浦-探测测量方面使用两个锁定激光器的性能。此外,低损耗、低非线性和低色散腔体的二极管泵浦固体激光器非常适合产生千兆赫的梳光谱。它们比传统的钛宝石系统更简单,同时还能更好地抑制高频泵浦强度的波动,支持更低噪声、更高功率,并且与光纤激光器相比重复率扩展更为简单。1. GHz双梳激光器双梳激光器的布局如图1(a)所示。线性共焦激光腔与单片 ...
腔长L与介质折射率n决定,使用外加电压调控压电陶瓷制动器(PZT)的方法就可以实现对frep的锁定。相比之下,锁定fceo则更为困难,常见的方法是通过f-2f自参考过程,生成超连续谱将光谱展宽至至少一个倍频程,然后将低频倍频后与高频拍频测得fceo后接入锁相环反馈器件进行锁定。虽然工作频率接近100MHz重复频率的光频梳正在成为一种成熟的技术,但重复频率为GHz的梳子仍然存在着大量挑战。首先,传统的激光器架构很难构建低噪声且重复频率>0.5GHz的谐振结构,而MENHIR-1550飞秒激光器是一种在100MHz至5GHz的重复频率下产生超低噪声锁模脉冲的稳定光源模块系统。其次,f-2f自 ...
有周期性介质折射率分布的材料。在PCF中,通过在光纤芯部和包层之间引入微米尺度的周期性孔隙结构,形成了具有特殊光学特性的通道。这些孔隙可以采用不同的形状、尺寸和排列方式,从而实现对光纤的折射率、色散特性和非线性效应等的精确控制。图1光子晶体光纤的结构(a)全固态光子晶体光纤(b)空芯光子晶体光纤二、PCF的优势1.单模传输特性单模传输特性[1]是光子晶体光纤中zui早被发现,也是zui引人注目的特性,单模传输可以提高光电器件的信号质量及传输速率。对于普通光纤,当传输光的波长大于截止波长,就可能实现单模传输,但是对于光子晶体光纤,对光纤结构经过合理设计,就能实现在所有波长无截止单模传输。2.非线 ...
是基于晶体双折射性质的偏振器件,在光线技术、光学测量以及各种偏振光技术等领域具有广泛的应用,其中1/4波片及1/2波片在偏振器件中应用尤其广泛。测量波片相位延迟量的方法主要有:光强探测法、旋光调制法、半阴法、光学补偿法等。这些方法主要基于对光强的测量,容易受光源的不稳定及杂散光的干扰,精度受到一定的限制,测量误差一般在0.5°左右。本文从理论上分析了利用椭偏仪测量波片相位延迟量的可能性,讨论了其测量精度及误差来源,并利用消光式椭偏仪测量了1/4波片以及1/2波片相位延迟量。实验表明:测量过程不受光强波动的影响,方法简单,操作方便,精确度高,测量波片相位延迟量精度达0.02°。测量的原理利用消光 ...
出薄膜厚度和折射率。测试样品为单层ITO膜,采用原子力显微镜标定,厚度为120.1nm,实验存在5nm的膜厚测量误差。其中,PBS的非理想和激光源输出偏振态畸变会引入混频非线性误差,而NPBS也是一个重要的误差源。了解更多详情,请访问上海昊量光电的官方网页:https://www.auniontech.com/three-level-56.html相关文献:1王勇辉,郑春龙,赵振堂.基于斯托克斯椭偏测量系统的多点定标法[J].中国激光,2012,39(11):163-167.2侯俊峰,于佳,王东光,邓元勇,张志勇,孙英姿.自校准法测量波片相位延迟[J].中国激光,2012,39(4):173- ...
S的玻璃基片折射率为1.5416,交错镀4层折射率分别为2.OO和1.45的分光介质膜系,每层厚度均为1.5λ。NPBS的光学参数如表1所示。偏振分量RTs0.93410.3571-0.85962.2255p0.20640.9785-1.70341.4758 表1 NPBS的光学参数注:=0.3649,K=4.5257,=0.8438,=0.7497;符号定义见式(8)~(10)。后面我们将对NPBS1与NPBS2引入的误差分别进行分析。了解更多详情,请访问上海昊量光电的官方网页:https://www.auniontech.com/three-le ...
应该考虑空气折射率的影响。空气折射率的校正方法有两种,一种是测量环境参数,如空气温度、空气压力、湿度及二氧化碳的密度,然后使用经验公式计算及校正空气的折射率。另外一种方法是用长度稳定的腔体,即波长跟踪器来测量,它由稳定的腔体及差分干涉仪组成,如图所示。一束偏振光是经标准腔体的前表面反射,另一束是经后表面反射。这种差分干涉仪可测量腔体的光学长度。腔体是由具有很小热膨胀系数的材料制成的,其几何长度非常稳定;因此,腔体的光学长度变化可认为是腔内空气折射率变化的结果。也就是说,空气折射率的变化可通过监测腔体的光学长度的变化来测量,那么就可在同一测量环境下,用作位移测量的校正。测量中,参考通道和测量通道 ...
式干涉仪由双折射棱镜(渥拉斯顿棱镜)组成,棱镜可把输入光束分为偏振方向正交的两弯曲光束。为了再次合成,固定的角反射镜反射光束,并在棱镜中发生干涉。干涉信号通常在分束器后激光器的腔体内接收,棱镜的横向位移将改变两偏振光束之间的光程差,并在干涉相位中引入线性变化。因此,棱镜相当于移动靶标。图3.6直线度干涉仪了解更多详情,请访问上海昊量光电的官方网页https://www.auniontech.com/three-level-45.html更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等 ...
或 投递简历至: hr@auniontech.com