也不同。二是焦距。焦距由要求扫描的像点排列的长度L和扫描角度决定,即当扫描长度一定时,与呈反比关系。在F数一定时,应尽可能用大的角,小的,以减小透镜和反射镜尺寸,从而减小棱镜表面角度的不均匀性和扫描轴承的不稳定性造成的不利影响。又由于入射光瞳位于扫描器上,在实现像方远心光路时,小可以使物镜与扫描器之间的距离减小,使仪器轴向尺寸减小。但L一定时,小就大,这给光学设计带来了困难,使光学系统复杂,加工制造成本增大。反之,仪器纵向尺寸加大,使用不便。实际工作中,应综合考虑各方面因素,反复权衡,才能最后确定。大多数线性成像物镜属于小相对孔径(一般下F数为)大视场的远心光学系统,要求具有一定的负畸变,在整 ...
和聚焦透镜的焦距分别为35 mm(准直透镜)和75 mm(聚焦透镜)。泵浦点(直径 857.1 μm)放置在 Tm,Ho:YAP 晶体的输入表面。在1.9–2.2 μm 处涂有30%(5%、7%、10%、20%、25%、30% 和 35%)透射率的平面镜是激光器的输出耦合器 (OC)。曲率半径为 300 mm 的平凹镜 (M2) 在 790-798 nm 处镀有高透射率 (T > 98.0%) 镀膜,两面镀膜为 1.9-2.2 μm凹面上的高反射率 (R > 99.5%) 材料。平面 45° 反射镜用作二向色镜 (M1),在 790-810 nm 处涂有高透射 (T > 99 ...
。在透镜两倍焦距的点光源穿过透镜后,会在透镜后侧两倍焦距处生成一个像。点光源的波前是球面传播的,入射透镜时,波前曲率半径为-1/2f(f=焦距),当穿过透镜,波前曲率半径变为1/2f。可知透镜将波前改变,即透镜轴为圆心的圆圈位置处,光波的相位发生改变。随着液晶光学技术发展,液晶空间光调制器(LC-SLM)的性能也越来越强,在相位调制领域已经比较成熟。在LC-SLM上加载一定规律的相位灰度图片,激光经过LC-SLM反射,效果等同于一个有确定焦距的透镜,加载特定的其它相位灰度图片,等效于不同焦距的透镜。利用LC-SLM构建变焦透镜与固定焦距匹配透镜离焦配合,实现对激光束的散角大小控制。这种利用LC ...
斯系统的近似焦距(FL)。通过显微镜的光束路径显示了镜镜的两个位置。黑色镜面对应着穿过光学系统中心的红色通道。灰色镜面对应着穿过光学系统边缘的橙色路径。扫描透镜/管透镜系统有双重用途:放大输入激光束以匹配物镜后孔径,并将扫描镜位置成像到后孔径上,以避免光束夹击。尽管这张图只显示了一维扫描,但可以使用靠近第①个扫描镜的第②个扫描镜来扫描正交轴,或者可以在这里所示的配置中使用一个两轴扫描镜。虽然这里显示的是简单的单线态透镜,但一个真正的扫描光学系统是由多元件透镜组成的,以获得色差校正和一个平坦的扫描场。扫描系统由扫描镜、一对中继透镜和物镜组成。中继透镜,被称为扫描透镜和管透镜(按光束传播顺序),其 ...
氏变换透镜的焦距大多大于 300mm。图1就是一个常用的系统。于是,长焦距的傅氏变换透镜都采用下图2所示的远距型结构。为了同时校正物面像差与光阑像差,采用如下图3所示的对称结构型式。四组元对称远距型透镜的前焦点到后焦点距离可以缩小到 左右。图3显示了双远距对称型和非对称型中的两种结构型式示例,其中透镜(b)为f'=70mm,输人面直径 48mm,频谱面直径5mm。由于频谱面小,像方孔径角达1/1.5。为充分发挥校正像差的潜力,采用非对称结构,末端的弯月形厚透镜可起到以增大像方视场角的作用。图1图2图3这类双远距型的优点是:总长度短,可供消像差的变数多,有利于提高像质或扩大孔径和视场。缺 ...
参数决定,即焦距 f' 、相对孔径 D/f' 和视场角 2ω。焦距 f'物镜的焦距决定了物体在接收器上成像的大小。用不同焦距的物镜对同一位置物体进行成像时,焦距越大,所得的像也越大。为满足各种成像要求,物镜焦距值相差很大,短的只有几毫米,长的达数十米。变焦镜头,当其焦距改变时,可以获得不同放大倍率的像。相对孔径 D/f'物镜人瞳的直径与其焦距之比称为物镜的相对孔径,用 D/f' 表示。相对孔径的大小决定了特镜的分辨率、像面照度和成像质量。摄影物镜的分辨率用单位长度(1mm)内可以分辨出的线对数N来表示.,摄影物镜的理论分辨率完全由相对孔径决定,相对孔径越 ...
点是:物镜的焦距大于目镜的焦距,且光学间隔 Δ=0。从无限远物体 AB 发出的平行光线经望运物镜后,在物镜的像方焦平面上成一个实像 A'B',它正好位于目镜的物方焦平面上,经目镜成像在无限远处,供人眼观察。该系统中,物镜框是孔径光阑,设在一次实像面处的分划板是视场光阑,目镜往往是渐晕光阑,其大小影响轴外点成像的渐晕系数。若图像接收器不是人眼,而是光电器件(如 CCD 及 CMOS 器件等),则可将它置于实像平面 A'B' 处。望远系统的视觉放大率 Γ 定义为:物体经过望远系统所成的像对人眼张角的正切 ,与人眼直接观察物体时物体对人眼张角的正切 之比。2. 望远物 ...
物镜和目镜的焦距都很短,且光学间隔△(物镜的像方焦点到目镜的物方焦点间的距离)较大。使用时,将物体 AB 置于物镜一倍焦距以外少许,经物镜后成一个放大的、倒立的实像 A'B',且位于目镜的物方焦面上或一倍焦距以内少许,经目镜成像在无限远或明视距离处,供人眼观察。在生物显微系统中,物镜框是系统的孔径光阑,设在一次实像面处的分划板是视场光阑,目镜住往是海晕光阑,其大小影响轴外点成像的渐晕系数。而对于测量用显微系统,孔径光阑没在物镜的像方焦平面上,以形成物方远心光路,提高测量精度。若接收器不是人眼,而是光电成像器件(如 CCD 及 CMOS 器件),则可将它置于实像平面 A' ...
镜目距相对于焦距有比较一定的值,决定了可能应用的较高倍率。在目镜的物方焦面上设置视场光阑,它到目镜第①面的距离称目镜的工作距离,不能太短。尤其在测量用显微镜中,此距离应保证近视眼观察时不能因目镜调焦而碰到分划板。由于物镜的高倍放大,目镜只承担很小的光束孔径角,但视场相对较大,因此显微镜目镜属短焦距的小孔径大视场系统,设计时首先应考虑轴外像差,主要是倍率色差、彗差和像散的校正。一、惠更斯目镜惠更斯目镜是观察用生物品微镜中普遍应用的目镜,由二块平面朝向眼睛的平凸透镜相隔一定距离组成,如下图1所示。朝向物镜的那块透镜叫场镜,朝向眼睛的那块透镜叫接目镜。场镜的作用是使由物镜射来的轴外光束折向接目镜,以 ...
的边缘厚度、焦距或倍率、后截距、系统的总长度等,甚至也可把系统的成本作为边界条件。对这类边界条件需提出相应的目标值和限制要求。凡是不符合所规定的限制条件和要求时,都称为违反边界条件。对第一类边界条件通常用以下方法处理:1. 变数替换法,此法常用于对透镜中心厚度的控制。如果透镜的中心厚度为d,定义一个新的变数,使。是透镜的最小厚度允许值,是一大于零的值。此时,不论取何值,都不会违反边界条件。这种方法在程序处理上非常方便。2.当迭代后的新解违反边界条件时,将违反的变数人为改变到允许范围内,再进行下一次迭代。这种做法易于处理,但破坏了原来的解,将会引起收敛过程的波动。3. 当新解违反边界条件时,认为 ...
或 投递简历至: hr@auniontech.com