荧光寿命成像技术在微塑料识别中的应用微塑料问题已成为全qiu关注的环境问题,其在多种生态系统中的累积导致了对野生生物及人类健康的潜在风险。荧光寿命成像(FLIM)技术作为一种先jin的识别手段,在微塑料研究领域显示出巨大的应用潜力。随着塑料使用量的持续增长,微塑料的环境污染问题日益严重。传统的微塑料检测方法往往耗时且效率不高。FLIM技术提供了一种高效的解决方案,能够通过分析微塑料的荧光寿命来快速识别和分类这些污染物。FLIM技术的核心在于使用荧光寿命作为区分不同物质的依据。荧光寿命是指材料被激光激发后,发出荧光持续的时间。在FLIM设备中,一个特定波长的激光被用来激发微塑料样本。样本吸收激光 ...
扫描式荧光寿命成像技术简介一、扫描式荧光寿命成像技术的原理为了更详细地解释扫描式荧光寿命成像技术(FLIM),我们可以从其基本原理着手。FLIM是一种基于荧光寿命差异进行成像的技术,荧光寿命是指荧光分子在激发状态下保持的平均时间长度。这个时间由分子环境、化学组成以及与其他分子的相互作用等因素决定。在FLIM实验中,首先用激光激发样品,然后测量荧光分子返回基态前发射光子的时间。这个时间通常以皮秒到纳秒为单位,对于不同的荧光分子或同一种荧光分子在不同环境中,这个时间是变化的。通过分析这一时间的分布,可以得到荧光分子所处环境的信息。这些信息以颜色编码的形式在图像上显示,从而得到既包含空间分布又含有环 ...
可逆,激发的荧光或者产生的拉曼信号经过原来的入射光路反向回到分光镜,并进入第二个针孔即探测针孔,在探测针孔位置聚焦之后到达探测器,探测器将收集到的信号进行收集并处理最后传送到计算机上显示。在这个光路之中,只有焦点上的光才能穿过探测针孔,焦点之外区域的光线在检测针孔平面位置是离焦的,因而不能穿过检测针孔,换句话说此时探测器上接收到的信号全部来自于焦点处。如果采用振镜控制激光光源的偏转,比如我司共聚焦拉曼成像系统中采用的振镜扫描系统,光路图如下(这里采用了无限远物镜,所以与上图光路不太一样)。振镜控制激光光束在样品焦平面上不同位置聚焦(x-y平面),焦点处激发出来的荧光或者拉曼信号经过原光路在狭缝 ...
上转换发光是一种违背了Stokes定律的发光现象,因为在上转换发光过程中,物质分子或原子吸收的光子能量低于发射的光子能量,即将红外光转化为可见光或将可见光转化为紫外光(如上图所示)。关于上转换过程发光机制目前有以下三种:a 激发态吸收ESA激发态吸收是指同一个粒子从基态通过连续多光子吸收到达能量较高的激发态。首先,发光中心处于基态G上的离子吸收一个能量为φ1的光子,跃迁至中间亚稳态E1能级,若光子的振动能量恰好与E1能级及更高激发态能级E2的能量间隔匹配,那么E1能级上的该离子通过吸收光子能量而跃迁至E2能级,从而形成双光子吸收,只要高能级上粒子数量够多,形成粒子数反转,那么就可以实现较高频率 ...
NA 检测、荧光生化检测、工业标示、科研、激光显示等领域有重要的需求和应用。其中,532nm最为常见。而532固态泵浦激光器的工作过程一般如下:1.808nm半导体激光器作为泵浦光源。2.808nm入射Nd YAG晶体,产生1064nm基频光。3.1064nm基频光经过倍频晶体,经过非线性效应倍频之后,波长减半,频率加倍,产生532nm绿光。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532,我们将竭诚为您服务。 ...
基于SPAD单光子相机的LiDAR技术革新单光子光探测和测距(激光雷达)是在复杂环境中进行深度成像的关键技术。尽管zui近取得了进展,一个开放的挑战是能够隔离激光雷达信号从其他假源,包括背景光和干扰信号。本文介绍了一种基于量子纠缠光子对的LiDAR(光探测与测距)技术,该技术通过利用时空纠缠光子对及SAPD单光子相机的特性,显著提高了在复杂环境中的探测精度和抗干扰能力。该技术使用SPAD单光子相机作为探测端,并通过内置的时间相关单光子步进偏移计数技术来提高测量时间精度。光源使用了一个基于β-钡硼酸盐(BBO)晶体的非线性光学晶体来产生纠缠光子对。通过精确控制光子对的发射和接收,以及利用SPAD ...
制,例如,在荧光分析中,LED在500-600nm的光中由于臭名昭著的“绿色间隙”功率和亮度往往无法满足;或者相对于毫秒级的切换时间,任何弧光灯的开/关不稳定性;又或者广谱光源进行多路复用研究时,谱宽也带来了限制。如今各种固态光源各有优劣,只有仔细评估它们的优点与局限性,才能为光驱动生命和材料科学应用的广泛领域找到zui合适的照面解决方案。图6.使用CELESTA光引擎(Lumencor, Inc., Beaverton OR),通过一根直径800um的光纤耦合到安装在尼康Ti/Ti2显微镜的临界落射照明器上,并产生均匀的荧光玻璃成像。使用尼康60/1.4 NA Plan Apo物镜和Ando ...
学镊子和薄片荧光显微镜。结合其他锥透镜或透镜,可产生各种光束轮廓,如准直环形光束和可变焦点环形光束。与激光扩束器、透镜或第二个锥透镜相结合的光学效果如下所示。1,将两个角度相同的锥透镜组合在一起,就能产生准直的环形光束。光束直径随两个元件之间的距离变化。2,该装置用于生成可变的环形焦点。通过移动第二个轴心,可以调整环形焦点的直径。3,环形对焦的产生 - 通过镜头焦距改变距离,通过轴心角改变直径。4,通过与激光扩束器相结合,优化了锥透镜的光线。这样就可以改变生成的贝塞尔光束的长度。5,通过改变轴心之间的距离来改变球体的焦距。这种设置可以减小非球面的焦距,从而实现低于衍射极限的聚焦。6,改善非球面 ...
、频率稳定、荧光显微镜和频 SFG和频与倍频类似,是将两个频率不同的光波(f1与f2)输入到非线性晶体中,相互作用后产生一个频率为两者之和的新光波(f1+f2)。如可以将1550nm的信号光和调谐的780nm或810nm泵浦源进行相互作用,获得可调谐的绿光波长。应用:1550nm级联三倍频、量子光学:量子纠缠等差频 DFG差频同样是涉及到两个输入光子(f1、f2)之间的相互作用,频率较低的信号光子激发泵浦光子,发射一个信号光子和频率为(f1-f2)的输出光子。在这个过程中,两个信号光子和一个输出光子出射,产生放大的信号光场。也被称为是光参量放大(OPA)。应用:中红光光谱学、环境监测、激光雷达 ...
关到超分辨率荧光显微镜的应用中具有p相位延迟的二进制相位调制。已发表的使用技术有LLSM, TIRF, SPIM, SMLM, Scanning, RIM。对于这些和其他已发表的二进制相位调制应用,请在我们的网站上查阅二进制相位调制教程。与常用的SXGA (1280 x 1024像素)相比,2K SLM在速度、活动面积(+16%)、每毫米线对(+65%)和像素数(x3.2)方面都有显著改进。较大的角偏差和增加的有源面积使整个光学系统具有更短的路径长度和更大的视角范围。SLM上的FLCOS光栅:英国ForthDD公司英国ForthDD公司作为全qiu高分辨率近眼(NTE: Near-To-Eye ...
或 投递简历至: hr@auniontech.com