拉曼测试中二次谐波的测量方式二次谐波测量方式一般有以下3种,第①种是基于二向色镜,第②种是基于反射式,第三种是基于低通滤光片。图1利用二向色镜的方式是常见的测量二次谐波的光路,原理如上图1所示。它是将飞秒激光器的激光源引入光路中,通过二向色镜将激发光向下反射到显微镜中,显微镜物镜不仅将基频光聚焦到样品上,同时也收集样品表面激发出来的二次谐波光,然后基频光被二向色镜阻挡,二次谐波光则透过二向色镜入射到光谱仪中。由于二次谐波测试总是伴随着激发光偏振态的改变,而该偏振态的改变取决于起偏偏振方向与半波片快轴的夹角,所以光路中还放置了起偏器和检偏器以及偏振态改变装置--半波片,起偏器和半波片放置在二向色 ...
1.二次谐波产生PPLN可用于单通结构的SHG,泵浦聚焦在晶体长度的中心。为了达到最佳效率,要达到Boyd-Kleinman聚焦状态。这就是光斑的大小,晶体长度与共聚焦参数的比值是2.84。SHG相互作用所能达到的最佳转换效率也取决于以下几个因素:连续波或脉冲泵源输入功率:在高功率时,可达到增益饱和泵浦/SHG波长:在低增益时,涉及更高能量光子(短波长)的相互作用,转换效率更高。1064nm→532nm对于低增益连续波,典型的转换效率为2%/Wcm。例如,对于1.5W的1064nm泵浦,40mm长的MgO:PPLN晶体,532nm的预期输出是180mW。在更高的功率下,Covesion在10W ...
用于冷却铍离子铯原子的PPLN晶体Covesion 的 MSFG 晶体系列最常用于量子光学系统,其中需要窄线宽激光器来访问特定的原子跃迁,以操纵和冷却原子和离子。通过使用高功率光纤泵浦激光器在 MgO:PPLN 中产生和频,可以轻松实现瓦级功率的冷却激光器。MSFG626可用于冷却铍离子,两个泵浦激光器分别为1051nm和1550nm,然后在MSFG626中结合,产生626nm。使用BBO晶体,这种输出可以在313nm处增加一倍频率至9Be+离子跃迁。类似地,我们的MSHG637已经被用来演示铯原子从1560nm和1077nm冷却到637nm,然后频率加倍到原子跃迁。我们的MSFG 和频晶体系 ...
CARS)、二次谐波生成(second harmonic generation,SHG)、双光子激发荧光(two-photon excited fluorescence,TPEF)的多模非线性显微镜,可以实现离体生物样本的分子组成和形态信息的高灵敏和高特异性无创无标记检测(区分恶性组织和良性0组织)。当前不足:完成多模非线性显微镜有以下挑战:(1) 光纤耦合的高功率超快激光源(具有风冷、坚固、紧凑、便携特性);(2) 在长距离上的使用光纤进行超短脉冲激光传输和信号采集,要求具有低损耗;(3) 置于内窥镜头端部成像用的超紧凑、快速、精确的扫描仪;(4) 高性能小型化高数值孔径的内窥显微物镜,在双 ...
该激光器产生二次谐波(532 nm)激发样品。脉冲宽度为7 ps。信号通过物镜(Edmund Inc,NA=0.4)聚焦到一个充满二甲基亚砜(DMSO)的细胞。在这种设置下聚焦点可以小于2µm2,从本质上限制了未来实验中潜在的空间分辨率。传输的辐射被一个相同的物镜收集,并通过另一个聚焦透镜定向到单模光纤中。将光纤的输出信号准直后送入PMT。PMT是由光子计数电子学通过适当的延迟线发送一部分入射光束触发的。激发脉冲(532 nm)后,检测持续60 ns,则每个通道的标称时间间隔为15 ps,这定义了该设置的时间分辨率,因此更换相应器件将改变系统的时间分辨率。图3图3为使用上述系统测得得甲醇(左) ...
双光子吸收或二次谐波成像)成为可能。在现有的显微镜上添加衍射SLM是一个简单的过程。SLM是一个单独的小元件,它被放置在光路中,几乎可以被放置在物镜前的任何一点,但理想情况下,它应该位于与物镜后孔径光学共轭的平面上。通过简单的望远镜将SLM放置在与现有扫描仪(即振镜)共轭的平面上,现有的激光扫描系统可以很容易地修改为与衍射SLM一起工作。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等 ...
子激发荧光和二次谐波产生(SHG)显微镜,需要一个单一的激发光束。早期大多数CARS显微镜使用了两个独立的电子同步皮秒Ti:sapphire振荡器,导致系统非常庞大和复杂。这很快就被目前单频CRS显微镜中的“金标准”所取代,该标准由皮秒Nd:YVO4振荡器同步泵浦光学参数振荡器(OPO)组成,这种激光系统的复杂性促使人们进行了密集的研究,旨在大幅减少占地面积和价格,同时提高可靠性,其主要是通过光纤格式架构。一类系统是基于飞秒Er:光纤振荡器在1550 nm,播种一对掺铒光纤放大器,其中一个是高度非线性光纤。通过对厚SHG晶体中的两个脉冲序列进行频率倍增和频谱压缩,可以合成775 nm的皮秒固定 ...
钡晶体中通过二次谐波产生395 nm的探测光束。使用孔径为0.65的物镜将两束光束共线聚焦在样品上。在孔径为20 μm的共焦平面上,测量了探头和泵浦光束的光斑直径d。dprobe≤300 nm, dpump≈400 nm。用交叉偏振片技术分析共焦平面后探头的极性克尔旋转。交叉分析仪的消光比<5x10-4。利用光电倍增管和锁相检测方案检测弱泵浦探头Kerr信号,该方案可用于可调至1ns的不同泵浦探头延迟。测量是在垂直于样品平面的外加磁场的相反方向下进行的。(⏐H0⏐≤4kOe)。在进行动态测量之前,确定静态克尔信号IKerr(α)为分析角α的函数,α = 0对应于交叉分析器,用于两个方向± ...
钡晶体中通过二次谐波产生。两个独立的望远镜允许一个人调整每个光束的模式,以获得对样品的zui佳聚焦。通过光延迟线后,泵浦光束与线偏振的探测光束共线。聚焦是使用一个标准的显微镜物镜与一个数值孔径0.65的40倍物镜。尝试使用反射物镜来zui小化探测脉冲的群速度色散,然而它恶化了探针束的偏振状态,否则探针束在整个显微镜中保持偏振消光比为0.0005。聚焦光斑的直径分别为300 nm和600 nm。反射的探针光束被分束器收集,聚焦在直径为20 um的针孔上。对于某些示例,这种共聚焦配置可用于消除来自样品衬底的背景散射光。在针孔之后,用一个偏振器来分析探测光束的克尔旋转,该偏振器相对于入射光束的交叉偏 ...
光。这被称为二次谐波产生,或者,更一般地,作为非线性光学。对于中心对称介质,当反演对称性被破坏时,会产生二次谐波。Pan等人(1989)预测,在磁性表面层的情况下,二次谐波反射中会出现MO Kerr效应。被称为非线性MO - Kerr效应(NOLI-MOKE) Á的实验证据zui初是由Reif等人(1991)从铁表面观察到的。从那时起,NOLI-MOKE作为表面磁性和磁性界面的探针而受到欢迎。NOLI-MOKE的一个特别特点是,测量的非线性克尔旋转通常比相同材料的普通克尔旋转大一个数量级。然而,非线性克尔旋转的分辨率的均方根误差约为1c,远小于正常克尔旋转。后者可以测量到比0.001c更好的分 ...
或 投递简历至: hr@auniontech.com