种基于高能光辐射与分子振动相互作用的振动光谱技术。当单色激光束击中样品时,光会被散射,其中包括弹性散射和非弹性散射。传统的拉曼测量是在样品表面的一个点上进行的,由于激光光斑的自然尺寸,通常不能覆盖大尺寸的样品区域。因此,光谱学方法无法获得空间信息。表面增强拉曼光谱(SERS)是一种基于增强局部电磁的新型光谱传感技术。SERS是一种新型的分析工具,提供了超灵敏的有机化学品和微生物的检测和表征。纳米结构贵金属表面附近的电场。SERS已被广泛应用于许多领域,如诊断、环境监测、生物检测和食品安全。近年来,SERS技术也被应用于β-受体激动剂的快速检测。然而,该方法重现性差,对样品有破坏性。拉曼化学成像 ...
完全了解的非辐射复合通道。与其他稀土离子相比,与主体材料晶格的强耦合以及由此产生的相对较宽的吸收和发射线使激光二极管阵列的泵浦更容易,并允许将激光发射调谐到几十纳米或实现脉冲宽度在100 fs到1 ps的范围内调谐,具体取决于主晶体和锁模类型。缺点是峰截面减小。具有特别强的电子-声子耦合的主体通常也表现出相对较低的热导率,这使得脉冲持续时间小于100 fs的激光器的功率缩放更具挑战性。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究 ...
不是利用受激辐射,而是利用非线性晶体材料中参量放大过程产生的光增益。与激光器类似,它也具有泵浦功率阈值,低于该值时,输出功率很小(只有一部分参量荧光)。图1.光参量振荡器示意图OPO一个很大的优势在于其信号光和闲散光可以在很大范围内变化,二者之间的关系由相位匹配条件决定。因此可以得到普通激光器很难或者不能产生的波长(例如,中红外,远红外或者太赫兹光谱区域),并且也可以实现很大范围的波长调谐(通常通过改变相位匹配条件)。因此OPO特别适用于激光光谱学。光参量振荡器一个限制条件是它需要具有很高光强和空间相干性的泵浦源。因此,通常需要采用一个激光器来泵浦OPO,由于不能直接采用激光二极管,该系统变得 ...
:首先,红外辐射波段位于不可见区,而普通光学玻璃对2.5u以上的光波不透明,因此在材料的选择上自由度很小。在设计时除了要选择透红外波段的材料,还必须考虑材料的机械能、应满足的尺寸等,这就使透镜系统在红外光学系统中的应用受到一定的限制,而反射式和折反射式光学系统占有较大的比例。同时,光学系统的结构应尽量简单,以减少能量的损失。其次,红外光学系统的接收器不是人眼或胶片,而是光电探测器。因此,光学系统的性能以它和探测器匹配的灵敏度、信噪比为主要评价依据,而不是单纯考虑光学系统的分辦率。第三,由于红外辐射波长较长,相应的衍射极限较低。早期的红外探测器分辨率低,对光学系统的像质要求也相应较低。但随着红外 ...
为内转换的非辐射过程。从S1电子态,分子通过辐射或非辐射过程回到基态。图1表示了在这些能级中发生的不同发光现象。荧光是分子(荧光团)通过发射可检测的光子(时间尺度为)衰减到基态的辐射过程。荧光发射发生在激发电子能级最低的位置(S1)。这种来自最低激发电子能级的强制发射确保了发射光谱保持不变,并且与激发波长无关。由于振动弛豫和内部转换中的能量损失,发射的荧光光子的能量较低(即发射发生在比激发更长的波长)。这种发射波长的位移称为斯托克斯位移。另一个主要发光过程,磷光,通过被称为系统间交叉(ISC)的过程发生在激发时电子能量跃迁到三元态能级(T1;T2;:::;Tn)。三重态的电子具有平行自旋,这些 ...
可以反射电磁辐射。因此,优选的调制器是谐振波克尔电池。在这种情况下,一个小的非线性晶体的电容,结合一个精心选择的电感,形成一个谐振“坦克”电路,其选择的频率是感兴趣的调制频率。电感/电容槽电路的谐振频率可根据公式计算图1.A用于高频调制的波克尔谐振腔示意图。B包括调制器的偏振光学原理图。偏光器的传输是由施加在磷酸钛铷(RTP)非线性晶体上的电压决定的。C显示器电压(黄色)和激光脉冲序列的示波器迹显示20 MHz调制,调制深度高。其中L和C分别表示所选电感和晶体自电容。在谐振频率处,电路的阻抗变得几乎无穷大,这意味着在输入功率相对适中的情况下,可以通过电容(非线性晶体)获得高电压。这是非常可取的 ...
探测和操纵的辐射。光源复杂且效率低下,通常基于超快激光器。探测器也同样复杂。理论上,低频拉曼,即具有太赫兹位移的拉曼,可以很容易地得到相同的数据。但实际上,随着拉曼位移的减小和强度的增大滤光片的阻塞特性使信号衰减,即使是微弱的宽带放大自发辐射也使背景噪声呈急剧的非线性增加。这限制了大多数拉曼系统使用传统拉曼技术捕获<200 cm-1的低波数拉曼信号。因此,低频拉曼需要在波长阻断和辨别效率上有一个量子飞跃,即滤波器具有更尖锐的截止特性和更窄的带宽。一种基于感光玻璃的新型体全息光学光栅解决了这一问题。这些滤光片用于清除激光输出的谱展,然后有效地对信号进行滤波以消除瑞利散射激光。因此,基于这些 ...
、IR(红外辐射)等)、质谱法、传感器法、x射线光谱仪、LIBS(激光诱导击穿光谱)等,每种方法在探测炸药时都有其不可避免的缺点。例如,太赫兹光谱的优势是由不同的爆炸物质在太赫兹波段的吸收特性不同决定的,有了这一特性,就可以进行爆炸物的探测和鉴定。太赫兹对非金属和非极性介电材料具有较强的穿透能力,可以探测到隐藏在这些材料中的炸药。太赫兹能量较弱,对生物组织无害,可实现生物材料的无损检测。但该技术的缺点是水分子对太赫兹的吸收能力很强,会限制检测范围。此外,太赫兹探测器装置结构复杂,体积大,制造成本高。拉曼光谱的优点是分析速度快、重复性好、精度好、波峰清晰、无需必要的预处理和无损。拉曼光谱的主要局 ...
来研究固体的辐射损伤。如果您对椭偏仪相关产品有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/three-level-56.html更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接 ...
互作用。电磁辐射与磁化体的微妙相互作用已经在磁光成像中得到了很好的利用,这成为20世纪观察磁性微观结构的主要方法。在磁光学中,光的偏振面在反射(克尔效应)或透射(法拉第效应)时的小旋转被用来映射磁化。磁光记录是基于相同的效果。这种方法允许在测量过程中施加外部磁场而不影响探针,如果要研究磁化动力学,这是一个明显的优势。磁光技术的空间分辨率受衍射限制,但研究人员经常低估光学显微镜的能力:分辨率几乎可以比波长小一个数量级。在比较不同的显微技术时,应该记住,有用的空间分辨率是由信噪比以及光斑大小或相互作用长度决定的。定量的、“与平台无关”的表征手段可以从作为空间频率函数的信噪谱中获得(例如,在具有相对 ...
或 投递简历至: hr@auniontech.com