光电导开关法辐射太赫兹原理图如图1,太赫兹光电导天线是在低温生长的半导体表面上沉积两片金属电极,两端电极之间保持一条微米量级宽度的空隙。在光电导开关两端上施加偏置电压后,当飞秒激光聚焦到天线缝隙表面时,基底材料中的电子吸收能量并从价带跃迁到导带,在天线表面瞬间(10-14 s)生成光生载流子(电子)。电子在偏置电场的加速作用下定向迁移生成瞬态光电流,进而向外辐射太赫兹波。理论上只要外加电场足够强,太赫兹辐射就可以得到显著的增强,但是实际实验中过高的能量会导致光电导开关被损坏。另外半导体基底、金属电极的几何结构与泵浦激光脉冲持续时间共同影响着光电导天线(光电导开关)的性能。半导体基底须具有高载流 ...
可将从包层中辐射出的光转移。图1.掺铒光纤放大器基本原理光纤通信系统中的光纤放大器之所以大部分采用掺铒光纤放大器,是因为铒元素能在1530-1625 nm范围内提供有用的增益,且石英光纤在这一波长范围内具有最低的衰减。掺铒光纤产生受激辐射。当用一高功率的泵浦光 λ 注入掺铒光纤时,将铒离子从低能级的基态E1激发到高能级E3上。Er3+在高能级上的寿命很短,很快即以无辐射跃迁的形式衰减到亚稳态能级E2 上。由于Er3+ 在能级E2 上寿命较长,在其上的粒子数聚集越来越多,从而在能级E2和E1之间形成粒子数的反转分布。这样,当具有1550 nm波长的光信号λEr通过这段掺铒光纤时,处于亚稳态能级的 ...
离的设定,热辐射的产生的能量如何处理等。因为,光纤产生的热辐射在可见光波段及小功率使用条件下可以近似忽略;但是在中红外波段或者高功率条件下需要特别留意,此时需要为光纤匹配专门的散热结构,因为热辐射产生的高温会直接融化常规结构的光纤端面。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询4006-888-532。 ...
,如放大自发辐射(ASE)、等离子体线等。因此,为了检测出微弱的低频拉曼模式,激光线必须清洗到-60分贝或更低。基于薄膜技术的带通滤波器可用于此目的;然而,它们不能去除距离激光中心波长100-200cm-1以内的噪声。与陷波滤波器类似,薄膜带通滤波器的线宽受到外延层数量的限制,这些外延层可以在不降低质量的情况下沉积,因此,目前只能窄到几纳米。图3反射型的VBG,即BragGrate™带通滤波器(BPF),可将频谱噪声降低至-60-70分贝,如图4所示。BPF并不是一个真正的带通滤波器,因为它反射信号而不是传输信号;然而它把有用的信号从噪声中分离出来,清理激光线。BPF的典型衍射效率约为95%, ...
以校正背景热辐射和照明激光束的强度模式,以生成代表目标表面反射率的超立方体。然后对反射超立方体进行分析,并与光谱特征参考库进行比较,以生成检测图,该检测图可以识别目标表面上的任何化学污染并绘制空间图。如图所示,也可以检测到可能存在于光束路径中的气体的存在。图1图2外腔量子级联激光器(ec - qcl)用于对目标的照明。这些都是基于Block Engineering的Mini-QCL™,如图2所示,这是一个微型,广泛可调,高速,坚固的EC-QCL。它们的商用波长在5.4到13 μm之间。我们的系统目前使用两个mini - qcl,其输出使用分束器组合。图2绘制了两种激光器在占空比为5%时的平均功 ...
可以使用其他辐射源扩展,例如X射线——用于表征不同材料中的元素分布,或太赫兹辐射,HSI被用来在生物组织中进行热感测。此外,光致发光mapping已与拉曼映射结合使用,以探测单层MoS2的光学性质。然而,在光学HSI的报告应用中,仍然只有少数关于基于镧系元素材料的HSI的例子。利用这种技术可以研究异核Tb3+-Eu3+单晶[TbEu(bpm)(tfaa)6]的光学各向异性。观察到的光学各向异性源于不同晶体学方向上Ln3+离子的不同分子堆积方式,导致某些晶面显示出更亮的光致发光,而其他晶面则光致发光较弱。有观点认为,晶体特定晶面的发光强度增加与沿着那些Ln3+···Ln3+离子距离较短的晶体学方 ...
能够承受空间辐射和大温度范围,使其成为空间应用的理想选择。7.片上系统光子集成电路在硅光子学和等离子体的作用(System-on-Chip Photonic Integrated Circuits in Silicon Photonics and the Role of Plasmonics),C. Hoessbacher, et al. (OFC, 2023)摘要:本文回顾了硅光子学上的光子集成电路。我们重点讨论了光通信、传感和量子技术应用中的芯片上系统,并概述了等离子体在硅光子学中的作用。8.由相干调制和全自适应光学实现的Tbit/s线速率卫星馈线链路(Tbit/s line-rate s ...
,(c)黑体辐射,(d)环境光,如led或白炽灯泡,以及汞蒸气或气体放电灯,以及(e)荧光和其他类型的光致发光干扰。在没有环境光干扰的情况下进行拉曼测量的常见解决方案是在黑暗空间中测量,或者将样品放置在杂散光密封的样品外壳中。拉曼测量中荧光的广谱干扰是目前使用RS的所有领域面临的主要挑战,并限制了其更广泛的应用。例如,每个分子的低拉曼有效截面(拉曼散射约为10−31至10−29cm2)依赖于λexc(激发波长);周围的折射指数(样品介质)对荧光的有效横截面每分子约为10−16cm2,显然难以获得具有强荧光样品的可行拉曼测量结果。荧光背景可能来自样品/溶剂中的杂质,样品的基质成分(特别是这些成分 ...
的光必须保持辐射强度和光谱强度一致,而整场手术可能持续数小时。Lumencor几乎于十年前就开创了使用固态光源代替氙气灯照明的先河,并用于内窥镜检查和机器人手术。人们普遍认为,内窥镜可以通过较小的手术通道改善进入和可视化,而外窥镜适合较大手术通道的需求。外窥镜支持优化焦距、紧凑性、外科医生的手术姿势、学员教育以及助手参与。与显微镜相比,外窥镜提供更长的工作距离、更高的放大倍数和在视场深度较大时更宽的视野,同时还为外科医生和手术助手提供便捷的可视化信息(图1)。外窥镜的固态照明可以减少传统显微镜可能出现的热损伤和组织反光。图1.正在使用的外科外窥镜。外窥镜安装在机械臂上,位于外科医生之间和患者的 ...
有源区的受激辐射在传统的QC激光器设计中,大部分电子都聚集在z低注入态和z高激光态。在阈值以下,电子主要通过纵向光学LO声子散射穿越有源区。在阈值以上,随着腔内的光强变得越来越强,电子通过受激辐射在活跃区域的传输速度越来越快。因此,在有源区域上的电压不再增加得那么快。图1我们展示了一种基于注入器和有源区域之间“两步”耦合的新型QC激光器设计,通过简单地改变施加电压,为高于阈值的激光器提供宽波长调谐范围。该设计的导带部分如图1所示。它是基于双声子共振对角跃迁有源区。在注入器基态g和上层激光态u之间插入一个耦合态c。以LO声子散射为主的从注入态到耦合态的散射寿命约为1.5 ps,而上激光态的散射寿 ...
或 投递简历至: hr@auniontech.com