度。同时,当衬底的热导率较小时,换能器层的小热质量也能够增强对界面热导率的灵敏度。图1显示了TR-MOKE信号检测方案。为了进行TR-MOKE测量,样品需要涂上一层薄的垂直磁化传感器,在测量前用外部磁铁磁化。非偏振分束器被插入在转向PBS和显微镜物镜之间,以将反射的泵浦和探测光束转向检测路径。在检测路径中,泵浦光束被滤波器去除,而探测光束通过半波片,然后被渥拉斯顿棱镜分成两个正交偏振分量。调整半波片,使得两个分量具有大致相同的强度。通过检测平衡检测器上相对强度的变化来监测探测光束偏振的瞬时变化。图1. TR-MOKE探测方案示意图。反射探测光束的偏振态被渥拉斯顿棱镜分离,并被平衡探测器探测到。 ...
法在SiO2衬底上合成了单层单畴四方三形状的MoS2薄膜一个区域的拉曼光谱成像。此三方MoS2薄膜的尺寸为~30um。MoS2薄膜的拉曼光谱通过两个主峰进行表征。一个被指认为E_2g^1模式(对应于在x-y层面Mo和S原子的振动模式),一个被指认为A_1g模式(对应于单胞中z轴方向两个S原子的振动模式)。峰的精确位置对应于E_2g^1和A_1g的振动模式,并且强度的比值依赖于MoS2样品层的厚度。从图1(a)和(b)拉曼光谱频率图像中可知,E_2g^1和A_1g峰的位置分别位于384cm-1和405cm-1。这些峰确定了合成的三方薄膜确是MoS2原子薄膜。值得注意的是两个峰的频率差为21cm- ...
拉曼多组分分析的技术方法拉曼光谱是基于单色光的非弹性散射,是一种可以用来识别特定化学键的强大技术。当入射光子和化学分子相互作用时,就会发生光子散射。大多数散射光子是由瑞利散射(一种弹性散射形式)产生的,并且与激发激光具有相同的波长。一小部分被散射的光子是由称为拉曼散射的非弹性散射过程产生的。虽然与瑞利散射光子相比,光子的数量相对较少,但这些光子的波长和强度携带有关特定化学键存在的定性和定量信息。在给定的拉曼光谱中,出现在特定波数位置的一组峰可以被描述为识别特定化学物质的“指纹”,同时,峰的高度可以与这种化学物质的浓度有关。多组分分析是拉曼光谱的应用之一。在过去的二十年里,许多研究小组提出了光学 ...
2O以及Au衬底,zui后反射回到椭偏仪的出射臂,zui终信息被接收。在物理层面将池体简化为四层膜的模型,即ITO/溶液/CU2O/(Au/Si),如图2-3(a)所示。根据拟合需要可以对结构模型进行调整,如:ITO和溶液混合层/CU2O/(Au/Si)的三层膜模型,如图2-3(b)所示。图2-3光学模型示意图(a)四层;(b)三层数据分析中用的是全局误差zui小化(GEM)数据分析法,数据分析程序如图2-4所示。其中光学模型选用上述的层状模型,拟合模型用LorentzOscillator+Drude模型和有效介质模型(EMA)。图2-4数据拟合分析程序2.3.2FilmWizardFilmW ...
主要反应的是衬底的信息,ITO和溶液对其影响甚小,也进一步证明该流动型装置用于监测薄膜沉积是可行的。对于α值,在370nm和600nm附近存在吸收峰,其和文献中报道的ITO玻璃基板上Au纳米膜的连续可见光吸收光谱出现的峰位十分接近,相对于文献其峰位发生蓝移且两峰值存在差异,这可能是由于Au薄膜上溶液和ITO带来的影响。图4-3沉积0s时(a)Psi和Delta(b)R随波长变化2.2装置对应的光学常数图4-4(a)是沉积之前测试得到的n、k随波长的变化图,从图中可以看到短波段图线较平滑,长波段数据波动大。n值在500nm附近出现峰,k值在600nm附近出现峰。500nm处n值存在跃迁,说明该处 ...
范围,其值从衬底的44°减小到30°左右。在沉积时间增加到540s、900s、1080s时,在约540nm处出现一个较明显的波包。不同时间测试得到的Psi值有变化,这也意味测试的基底表面发生了变化。图4-5(b、f)中显示椭偏参数Delta值随着时间的变化与椭偏参数Psi的趋势一致。在长波500-800nm的范围内得到的不同时间的Delta值从Au衬底所对应120°减小到70°附近。当沉积时间增加到540s、900s、1080s时,约在540nm处出现较明显的峰位。Delta值同样显示出测试基底表面发生了改变。图4-5(c、g)是吸收系数α随不同沉积时将随波长的变化,和0s相比,整体上变化趋势 ...
范围,其值从衬底(0s)时接近0增加到1.3,这也意味着新的物质增加,导致衬底的信息减少。在沉积时间增加到360s时,在410nm附近处现一个较明显的波包,同时在500-800nm区域出现一个波包,大约在700nm附近。当沉积时间增加到540s之后,n的值恢复到沉积180s附近。可以看出随着沉积的变化,沉积的CU2O导致n值在360s的时候有额外的峰出现。图4-6(b,d)中显示吸收系数k值随着时间的变化,与反射率R的趋势一致。在所测波长范围内的k值在沉积过程都有所降低,特别是在长波500-800nm的范围内明显。当沉积时间为180s的时候,k的值大约从4.3降到1.5,在波长为300-500 ...
范围,其值从衬底的-20增加到-0.5,这也意味着新的物质沉积,导致衬底的信息减少。在沉积时间增加到360s和540s时,整体上值比180s减小了3左右,在350nm附近出现一个较明显的波包,同时在550nm附近出现一个波包。当沉积时间增加到720s之后,的值恢复到沉积180s附近,但是在500-800nm波段稍小,且在500nm附近出现波包。沉积时间为900s时,值的变化和720s一致,但是出现的波包位置大概在530nm附近。当时间为1080s时,在300-500nm波段其值和720s一样,在长波段稍大,且出现了500nm和600nm附近的两个波包。从图4-7(a,c)可以看出随着沉积的变化 ...
反映的是Au衬底的信息,而随着沉积时间的增加沉积薄膜变厚Au衬底的信息将变小,Drude能级寿命减小趋势可由此而来。振子1的能级寿命对应于EOA、EOB、EOC和EOD跃迁激子,其值大都在10-16s数量级,随时间的变化规律不明显。振子2的能级寿命对应于EOAEOBEOCEODE1A跃迁激子,360s和720s的在10-15s数量级,其余在10-16s数量级,随着时间的增加有减小的趋势。振子3的能级寿命对应于EOC、EOD和E1A跃迁激子,其变化比较大,360s和720s在10-14s数量级,而180s、540s、900s在10-16s数量级,1080s在10-15s数量级。振子4的能级对应于 ...
。根据波长、衬底折射率、折射率差、通道的宽度和深度,可以激发一个或多个横向振荡模式。单模操作是非常有价值的,因为它是许多集成的光学元件的功能。集成光学元件特别是在光通信技术中通常配备光纤,线性电光效应,也称为波克尔效应,是一种二阶非线性效应,包括在外加电场时光学材料折射率的变化。折射率的变化量与电场强度、其方向和光的偏振率成正比。制造集成光调制器的shou选材料是铌酸锂(LiNb3)。如果使用长度为L的电极将电场施加于电导,则电极之间区域的折射率会发生变化,从而产生引导光的相移,相移与所施加的电压会呈线性关系。图2:相位调制器图3:相移这相当于几伏特,在给定的电极几何形状下;对于较长的波长,它 ...
或 投递简历至: hr@auniontech.com