(FMCW)相干光检测原理,以小型集成化的设计模式,实现了传统复杂大型设备的测量能力。测试:20kHz 频率功率换能器,工作距离:375px振动图谱:在换能器在各个位置的测量结果。当换能器频率在Mhz 附近时,幅度测量对测量精度的要求大大提高。结果显示,昊量测振传感器能很好的分辨振幅的实时波形,得到nm 级的测量精度。二、超声手术刀超声手术刀是一种通过激发20 kHz~60 kHz 超声振动的金属探头(刀头),对生物组织进行切割、消融、止血、破碎或去除的外科手术仪器。超声手术刀的工作性能一般与刀头的超声输出功率、频率直接相关,因此对刀头的超声特性探测至关重要。超声手术刀的刀头尺寸一般为5-10 ...
区域反射回的相干激光光波的多普勒频率,进而确定该测点的振动速度V。基于上述光学基本理论,其测振原理如图 1 所示,由激光器发出频率为f 的激光束经分光镜入射到被测表面,由于测量表面的振动,反射光将产生多普勒频移 ,频率为f+fr的参考光束和频率为 f+反射光经反光镜反射共同投射到光电探测器上产生了拍频信号,经过电子信号处理系统,Z后得到频率为-fr拍频的电信号,由于参考光束增加的fr已知,所以,对激光多普勒测振仪的输出信号-fr进行分析和处理就可得到所需的物体振动信号。 由于光电探测器的输出信号混合了方向、频率已知的参考光束,因此能够分辨出被测表面的运动方向、运动幅度(即位移大小)以及运动频率 ...
,从而降低其相干性。经过匀化后的光束,再经准直处理,打在双阵列匀化镜子,最终成像出较好的匀化光斑。(其光路如下图)图7:带扩散片的激光匀化光路匀化片两侧,是参数相同的聚焦透镜。激光光源,经准直入射,在第一个聚焦透镜上聚焦,而扩散片,恰落在其焦面上。经焦面上的扩散片匀化出射后的光源,再被准直,打在双阵列匀化光路上。相干性的减小,可以大大的减少接收屏面上子单元成像的小光斑之间的锐利边缘的产生。图8:微透镜匀化效果;其中左图为未加扩散片的匀化效果;右图为扩散片的匀化效果;微透镜阵列——天空才是极限!-----革命性的全自动“3D打印”光学加工技术!更低成本!更快速度!对于微透镜阵列有兴趣或者任何问题 ...
技术,是一种相干拉曼散射过程,允许使用光谱和空间信息进行化学成像[18],由于相干受激发射过程[1]能产生约103-105倍的增强拉曼信号,可以实现高达视频速率(约25帧/s)[2]的高速成像。SRS显微镜继承了自发拉曼光谱的优点, 是一种能够快速开发、label-free的成像技术,同时具有高灵敏度和化学特异性[3-6], 在许多生物医学研究的分支显示出应用潜力,包括细胞生物学、脂质代谢、微生物学、肿瘤检测、蛋白质错误折叠和制药[7-11]。特别的是,SRS在对新鲜手术组织和术中诊断的快速组织病理学方面表现出色,与传统的H&E染色几乎完全一致[12,13]。此外,SRS能够根据每个物 ...
应,可以产生相干的硬X射线,波长达0.4Å。飞秒强激光与惰性气体原子相互作用而引发的高次谐波,可获得软X波段的相干辐射,波长可覆盖十纳米至几纳米。飞秒激光在晶体中的二倍频、四倍频、六倍频效应可将近红外的飞秒激光变换至可见、紫外、极紫外和真空紫外,直至150nm,与高次谐波的软X波段相接。利用飞秒激光在晶体中的参量振荡和参量放大过程中,可以在近红外,甚至红外波段实现宽频谱范围的调谐。除此之外,利用飞秒激光在非线性介质中的传输,可以发生自相位调制,四波混频,孤子自频移和超连续等多种非线性效应,这些效应都可以使飞秒激光器输出的光脉冲从单一波长变换到紫外至红外波段。特别值得提出的是,太赫兹波这一在大分 ...
时间。因此,相干拉曼散射方法,如刺激拉曼散射效应,现在被广泛用于拉曼成像。在这个应用说明中,我们将描述Moku:Lab的锁相放大器是如何在波士顿大学的刺激拉曼成像装置中实现的。介绍拉曼光谱是一种非破坏性的分析化学技术。它直接探测样品的振动模式。与电子光谱法相比,拉曼光谱法提供了高化学特异性,而不需要荧光标签。样品可以以完全无接触和无标签的方式被询问,防止对系统的破话。红外(IR)光谱是另一种常用的获得振动光谱的方法。红外光谱和拉曼光谱的选择规则是不同的;红外光谱对偶极子的变化很敏感,而拉曼光谱对偏振性的变化很敏感。这使得红外和拉曼成为一组特定化学键的良好工具。对于成像和显微镜的应用,在选择红外 ...
。衍射极限的相干光学系统的截止频率为上式中,为频谱面的半径(mm),为傅里叶变换透镜的焦距(mm),是光波波长(mm)。所以相当于几何光学中物高,相当于几何光学中的孔径角,即信息容量W实质上等价于几何光学中的拉氏不变量。对于信息系统J表示能传递的信息量大小,对于成像系统J表示传递能量的大小。从而从光学设计的角度看,J表征了光组本身的设计、制造的难度。图2傅里叶变换透镜要求对两对物像共轭位置校正像差。当平行光照射输入面上的物体,如光栅时、发生衍射。不同方向的衍射光束经傅里叶变换透镜后,在频谱面上形成夫琅和费術射图样。为使图样清晰,各级衍射光束必须具有准确的光程。所以,傅里叶变换透镜必须使无穷远入 ...
RS是另一种相干拉曼散射(CRS)过程,其激发条件与共振CARS相同。与自发拉曼散射不同,在自发拉曼散射中,样品被一个激发场照亮,SRS中两个激发场在泵浦频率ωp和斯托克斯频率ωs处重合在样品上。如果激发束的差频Δω = ωp−ωs与焦点内分子的振动频率Ω相匹配,即分子跃迁由于分子跃迁的刺激激发,速率提高。分子居群从基态通过虚态转移到分子的振动激发态(图1A)。这与自发拉曼散射相反,自发拉曼散射从虚态到振动激发态的转变是自发的,导致信号弱得多。图1.受激拉曼散射原理(A) SRS的能量图。泵浦和斯托克斯束的共同作用通过虚态有效地将样品中的分子从基态转移到第一振动激发态。被激发的振动状态可以通过 ...
光学基准进行相干跟踪。超低噪声OFC为高精度的、高分辨率的光谱学提供了一个通用的工具。超快光源,可以发射一系列均匀间隔的飞秒脉冲,可以作为光学频率梳,提供微波和光域之间的相位相干链接[1,2]。任意纵向模式的频率可以定义为,其中m为梳状线数(整数),为激光重复频率,为载波包络偏移(CEO)频率。这种技术的出现将光载波的相位控制技术扩展到光谱领域[3,4]。例如,精准的光学相位控制是光学原子钟铷钟[5 10]和物质量子态表征的关键元素[11 13]。虽然控制性能随着时间的推移有所改善,但仍需要本质低相位噪声锁模激光器,来满足高端基本时间常数变化应用研究的需求[14 16]。近期,长期相位稳定性和 ...
扫描,也需要相干的自由空间激光通信和光量子密钥分配链接,例如从地面到太空。本应用说明将介绍如何使用Moku:Lab的任意波形发生器制作复杂的二维扫描图案。第一部分展示了如何将AWG波形加载到Moku:Lab,以便在X-Y模式下在示波器上进行可视化。第二部分增加了一个快速转向镜和一个激光系统,以产生适合采集系统的任意扫描模式。Moku:Lab的任意波形发生器仪器Moku:Lab的任意波形发生器可以从预设的波形、输入方程或从文件中导入的点生成双通道自定义模式。支持从1mHz到125MHz的输出频率。脉冲输出可以配置为脉冲之间有高达250,000个周期的死区时间。预设波形包括正弦波、高斯波、指数上升 ...
或 投递简历至: hr@auniontech.com