首页  技术文章  椭偏仪在位表征电化学沉积的系统搭建(九)- 光学模型的建立与数据的提取

椭偏仪在位表征电化学沉积的系统搭建(九)- 光学模型的建立与数据的提取

发布时间:2024-01-26 17:40:16 浏览量:1083 作者:Alex

摘要

椭偏仪的在位装置首先要满足透光,其次是保证工作电极易于调节入射光和出射光在同一光平面,需考虑溶液的光程,原则上越小越好,这样可以减小光的衰减,更易得到沉积薄膜的信息。因此需要根据系统进行设计。

正文


椭偏仪在位表征电化学沉积的系统搭建(九)- 光学模型的建立与数据的提取


4.3在位测试装置


目前的在位椭偏仪监测电化学沉积的关键在于系统的集成。实验室的椭偏仪光源为氙灯,可以进行全谱的测试,但是这也导致单波长的光强度较弱,因此装置设计中的光路设计尤为重要,另外是光斑的大小问题,光斑大小会随着测试角度的变化而变化。另外其设计需要满足电化学薄膜沉积的需求,又要同时满足椭偏仪测试的需求。如作为电解池它需要满足容电解液充足,且可以放置好工作电极、对电极和参比电极。椭偏仪的在位装置首先要满足透光,其次是保证工作电极易于调节入射光和出射光在同一光平面,需考虑溶液的光程,原则上越小越好,这样可以减小光的衰减,更易得到沉积薄膜的信息。因此需要根据系统进行设计。


4.4光学模型的建立与数据的提取


在位椭偏仪测试的另外一个挑战在于数据的分析。通过椭偏光谱的在位监测可以获得(ψ,Δ)值,利用这些光谱,需要进行建模从而获取其光学参数。表1-1总结了在位椭偏仪数据分析常用的分析方法。



线性回归分析(LRA)

全局误差zui小化(GEM)

虚拟衬底近似(VSA)

解析条件

介电函数是已知

介电函数与厚度无关

薄膜和衬底吸光

难易程度

容易

困难

中等

介电函数

必要

非必要

必要

透明材料分析

可以

可以

不可以

梯度层分析

困难

困难

可行

实时控制

可以

不可以

可以

表1-1在位椭偏仪数据分析方法


表1-1所示的线性回归分析(LRA)必须知道样品所有的介电函数,通过拟合得到误差的zui小值来确定光学常数和薄膜结构。当样品中有未知的介电函数时,需要进行介电函数建模,使用数值反演法可以提取样品的介电函数。图1-17是用LRA椭偏仪数据分析的流程图,可以看出椭偏仪数据提取与分析的步骤为:(1)建立适合的光学模型;(2)确定每一层的介电常数;(3)对椭偏谱谱(ψ,Δ)进行拟合;(4)误差计算。通过不断重复以上四个步骤得到zui小误差,然后进行(5)光学常数和厚度的测定及(6)结果可靠性判断。


图1-17椭偏光谱法数据分析程序流程图


表1-1中的全局误差zui小化法(GEM)是Collins团队开发的数据分析方法,该方法使我们能够同时确定样品的介电函数和结构。因此,当样品的介电函数未知时,GEM是一种相当强大的分析方法。


图1-18展示了GEM的数据分析过程。图1-18(a)为椭偏谱的光学模型。在这个模型中,分别表示表面粗糙度层、本体层和基底的介电函数。在分析过程中,先要确定本体层、基底层的介电常数。通常基底层介电函数可以从薄膜沉积前的(ψ,Δ)光谱使用数值反演法得到。表面粗糙度层的由EMA计算。如图1-18(b)所示,该光学模型中的未知参数为体积层的介电函数表面粗糙度层厚度ds,和本体层厚度db。如果随时间的变化可知,则dsdb可以直接从测量的光谱(ψ,Δ)使用数值反演得到。然后用线性回归分析,可以确定测量层的光学常数和厚度,如图1-18(b)和(c)所示。不断重复以上步骤使得误差小zui,从而得到材料的光学常数和厚度,zui后进行结果的可靠性判断完成整个分析过程。


图1-18全局误差zui小化(GEM)法数据分析步骤


表1-1中的虚拟衬底近似法(VSA),是1993年Aspnes开发的,其要求薄膜和衬底表现出相对较大的光吸收。VSA常用于半导体衬底上形成的半导体层。VSA可以描述介电函数在厚度方向上连续变化的梯度层。将VSA应用于成分梯度层的分析,则可以确定每一层的成分。从VSA中也可以看出晶体体积分数在生长方向上的变化。然而,与LRA和GEM相比,VSA不能应用于光吸收较低的样品。


了解更多椭偏仪详情,请访问上海昊量光电的官方网页:

https://www.auniontech.com/three-level-56.html


更多详情请联系昊量光电/欢迎直接联系昊量光电

关于昊量光电:

上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。


相关文献

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陈篮,周岩. 膜厚度测量的椭偏仪法原理分析[J]. 大学物理实验, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦杨.椭偏仪在位表征电化学沉积的系统搭建.云南大学说是论文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李广立. 氧化亚铜薄膜的制备及其光电性能研究[D]. 西南交通大学, 2016.

[25] 董金矿. 氧化亚铜薄膜的制备及其光催化性能的研究[D]. 安徽建筑大学, 2014.

[26] 张桢. 氧化亚铜薄膜的电化学制备及其光催化和光电性能的研究[D]. 上海交通大学材料科 学与工程学院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的电化学制备及其光电化学性能的研究[D]. 云南大学物理与天文学院,2019.

阅读延伸

展示全部  up