首页  技术文章  椭偏仪在位表征电化学沉积的系统搭建(三十二)- 总结与展望

椭偏仪在位表征电化学沉积的系统搭建(三十二)- 总结与展望

发布时间:2024-06-27 17:13:33 浏览量:491 作者:Alex

摘要

本文主要针对椭偏仪在位检测薄膜沉积系统搭建,并以薄膜的沉积进行了在位监测与分析。包括:(1)在位监控装置的设计。(2)不同溶液浓度对实验的影响。(3)椭偏仪在位监测薄膜的生长过程。

正文


椭偏仪在位表征电化学沉积的系统搭建(三十二)- 总结与展望


上文主要用设计的微流腔体进行了椭偏仪的在位监测与分析。实验包括三个部分,一是不同电流下Cu2O膜的沉积;二是准在位椭偏仪监测Cu2O薄膜的沉积过程,即每沉积180s后进行300-800nm波段的椭偏仪测试,共测试了6组(180-1080s);三是实验是椭偏仪在位监测Cu2O薄膜的沉积过程,0-1080s,椭偏仪取样时间约为13s。经过对实验得到的椭偏谱分析拟合知:


1.对于该微流电解池体系,用-0.4mA的恒流沉积可以得到单一的Cu2O薄膜,故而后续实验选-0.4mA作为沉积电流;


2.准在位椭偏仪监测Cu2O薄膜的沉积得到椭偏谱整没有呈现出随沉积时间的一致变化规律,但是和0s比,由于Cu2O薄膜的出现,R值变小了。拟合得到的厚度显示沉积速率是随着时间发生变化的,Cu2O薄膜的生长方式可能是岛状和层状生长相结合,其中单独层状生长拟合得到的库伦转换效率为36%,单独岛状生长得到的库伦转换效率为50%。


3.通过单波长实时在位监测Cu2O薄膜的沉积发现,用准在位拟合得到的薄膜厚生长速率计算出的Psi和Delta值和实验测试得到的值在数值和峰位上都有差别这可能与沉积过程的差异有关。在准在位全谱扫描中是每沉积180s后停下来进行约17分钟测椭偏测试,然后再重复测试到沉积时间为1080s,而单波长测试是不间断沉积1080s。所以可能由于沉积中间的间隔带来薄膜表面的差异,进而影响得到薄膜的表面形貌。通过SEM对比发现,连续沉积的1080s得到的Cu2O薄膜表面岛状较明显,这也是导致实验和计算得到的Psi和Delta值不同的原因。


本文主要针对椭偏仪在位检测薄膜沉积系统搭建,并以Cu2O薄膜的沉积为例进行了实时在位监测与分析。研究内容包括了:(1)在位监控装置的设计。主要展开电解池的设计,包括用COMSOL进行电场分布的拟合,从而设计电极的位置等。并根据实验和光路的调节的优化制备了两种类型的电解池。(2)不同溶液浓度对实验的影响。用Pb溶液为案例,进行了不同浓度的Pb溶液的椭偏谱。(3)椭偏仪在位监测Cu2O薄膜的生长过程。研究包括全谱(300-800nm)椭偏仪Cu2O薄膜沉积的准在位监测以及单波长(380nm)椭偏仪Cu2O薄膜沉积的在位监测。主要结论包括:

(1)设计和制备了用于椭偏仪电化学在位测试的微流腔体电解池。

(2)利用微流腔体的电化学电解池,用全谱椭偏仪在位监测Cu2O薄膜的沉积过程。利用光学模型的建立拟合椭偏谱得到了不同沉积时间下的薄膜光学常数、介电常数及厚度。从而得到层状模型下平均沉积速率为0.40nm/s。另外也发现,时间较短范围内(<360s),Cu2O的生长为非线性,更趋近于岛状生长,通过拟合得到其生长沉积速率为d'=0.005t0.72nm/s,平均库伦效率为50%。


(3)椭偏仪单波长(380nm)实时监控Cu2O薄膜沉积:在同样的沉积条件下实时监控在Au基底上的Cu2O薄膜沉积(0-1080s),采样时间约为13s。实验发现Psi和Delta的实验值与利用全波长厚度拟合得到椭偏参数有所差异。这个差异可能来源于用于全谱测试时的测试所用的生长时间,实际上忽略了生长层在没有加电压并进行椭偏仪测试时(>17min)产生的变化。SEM也发现两种情况下(1080s)得到的Cu2O薄膜的表面形貌不同。


本课题通过设计微流腔体电解池实现了椭偏仪在位监测Cu2O薄膜的电化学沉积过程。


通过本次的研究,对型号为Ellip-SR-I的椭偏仪在位监测电化学薄膜沉积进行了扩展,为其他类似的监测提供案例。但是本课题研究中还存在一些待解决的问题:

(1)需进一步设计全谱扫描和单波长扫描的测试条件。

(2)提高全谱扫描的测试时间:通过采样率或者减少波长范围。

(3)进一步用光刻等技术制备微流腔体,更好的控制液流降低液流等造成的影响。


了解更多椭偏仪详情,请访问上海昊量光电的官方网页:

https://www.auniontech.com/three-level-56.html


更多详情请联系昊量光电/欢迎直接联系昊量光电

关于昊量光电:

上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。


参考文献

[1] WONG H S P, FRANK D J, SOLOMON P M et al. Nanoscale cmos[J]. Proceedings of the IEEE, 1999, 87(4): 537-570.

[2] LOSURDO M, HINGERL K. ellipsometry at the nanoscale[M]. Springer Heidelberg New York Dordrecht London. 2013.

[3] DYRE J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals[J]. Physical Review B, 1993, 48(17): 12511-12526. DOI:10.1103/PhysRevB.48.12511.

[4] CHEN S, KÜHNE P, STANISHEV V et al. On the anomalous optical conductivity dISPersion of electrically conducting polymers: Ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model[J]. Journal of Materials Chemistry C, 2019, 7(15): 4350-4362.

[5] 陈篮,周岩. 膜厚度测量的椭偏仪法原理分析[J]. 大学物理实验, 1999, 12(3): 10-13.

[6] ZAPIEN J A, COLLINS R W, MESSIER R. Multichannel ellipsometer for real time spectroscopy of thin film deposition from 1.5 to 6.5 eV[J]. Review of Scientific Instruments, 2000, 71(9): 3451-3460.

[7] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[8] DULTSEV F N, KOLOSOVSKY E A. Application of ellipsometry to control the plasmachemical synthesis of thin TiONx layers[J]. Advances in Condensed Matter Physics, 2015, 2015: 1-8.

[9] YUAN M, YUAN L, HU Z et al. In Situ Spectroscopic Ellipsometry for Thermochromic CsPbI3 Phase Evolution Portfolio[J]. Journal of Physical Chemistry C, 2020, 124(14): 8008-8014.

[10] 焦杨.椭偏仪在位表征电化学沉积的系统搭建.云南大学说是论文,2022.

[11] CANEPA M, MAIDECCHI G, TOCCAFONDI C et al. Spectroscopic ellipsometry of self assembLED monolayers: Interface effects. the case of phenyl selenide SAMs on gold[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11559-11565. DOI:10.1039/c3cp51304a.

[12] FUJIWARA H, KONDO M, MATSUDA A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Applied Physics, 2003, 93(5): 2400-2409.

[13] FUJIWARA H, TOYOSHIMA Y, KONDO M et al. Interface-layer formation mechanism in (formula presented) thin-film growth studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Physical Review B - Condensed Matter and Materials Physics, 1999, 60(19): 13598-13604.

[14] LEE W K, KO J S. Kinetic model for the simulation of hen egg white lysozyme adsorption at solid/water interface[J]. Korean Journal of Chemical Engineering, 2003, 20(3): 549-553.

[15] STAMATAKI K, PAPADAKIS V, EVEREST M A et al. Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown ellipsometry[J]. Applied Optics, 2013, 52(5): 1086-1093.

[16] VIEGAS D, FERNANDES E, QUEIRÓS R et al. Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells[J]. Biomedical Optics Express, 2017, 8(8): 3538.

[17] ARWIN H. Application of ellipsometry techniques to biological materials[J]. Thin Solid Films, 2011, 519(9): 2589-2592.

[18] ZIMMER A, VEYS-RENAUX D, BROCH L et al. In situ spectroelectrochemical ellipsometry using super continuum white laser: Study of the anodization of magnesium alloy [J]. Journal of Vacuum Science & Technology B, 2019, 37(6): 062911.

[19] ZANGOOIE S, BJORKLUND R, ARWIN H. Water Interaction with Thermally Oxidized Porous Silicon Layers[J]. Journal of The Electrochemical Society, 1997, 144(11): 4027-4035.

[20] KYUNG Y B, LEE S, OH H et al. Determination of the optical functions of various liquids by rotating compensator multichannel spectroscopic ellipsometry[J]. Bulletin of the Korean Chemical Society, 2005, 26(6): 947-951.

[21] OGIEGLO W, VAN DER WERF H, TEMPELMAN K et al. Erratum to ― n-Hexane induced swelling of thin PDMS films under non-equilibrium nanofiltration permeation conditions, resolved by spectroscopic ellipsometry‖ [J. Membr. Sci. 431 (2013), 233-243][J]. Journal of Membrane Science, 2013, 437: 312..

[22] BROCH L, JOHANN L, STEIN N et al. Real time in situ ellipsometric and gravimetric monitoring for electrochemistry experiments[J]. Review of Scientific Instruments, 2007, 78(6).

[23] BISIO F, PRATO M, BARBORINI E et al. Interaction of alkanethiols with nanoporous cluster-assembled Au films[J]. Langmuir, 2011, 27(13): 8371-8376.

[24] 李广立. 氧化亚铜薄膜的制备及其光电性能研究[D]. 西南交通大学, 2016.

[25] 董金矿. 氧化亚铜薄膜的制备及其光催化性能的研究[D]. 安徽建筑大学, 2014.

[26] 张桢. 氧化亚铜薄膜的电化学制备及其光催化和光电性能的研究[D]. 上海交通大学材料科 学与工程学院, 2013.

[27] DISSERTATION M. Cellulose Derivative and Lanthanide Complex Thin Film Cellulose Derivative and Lanthanide Complex Thin Film[J]. 2017.

[28] NIE J, YU X, HU D et al. Preparation and Properties of Cu2O/TiO2 heterojunction Nanocomposite for Rhodamine B Degradation under visible light[J]. ChemistrySelect, 2020, 5(27): 8118-8128.

[29] STRASSER P, GLIECH M, KUEHL S et al. Electrochemical processes on solid shaped nanoparticles with defined facets[J]. Chemical Society Reviews, 2018, 47(3): 715-735.

[30] XU Z, CHEN Y, ZHANG Z et al. Progress of research on underpotential deposition——I. Theory of underpotential deposition[J]. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31(7): 1219-1230.

[31] PANGAROV n. Thermodynamics of electrochemical phase formation and underpotential metal deposition[J]. Electrochimica Acta, 1983, 28(6): 763-775.

[32] KAYASTH S. ELECTRODEPOSITION STUDIES OF RARE EARTHS[J]. Methods in Geochemistry and Geophysics, 1972, 6(C): 5-13.

[33] KONDO T, TAKAKUSAGI S, UOSAKI K. Stability of underpotentially deposited Ag layers on a Au(1 1 1) surface studied by surface X-ray scattering[J]. Electrochemistry Communications, 2009, 11(4): 804-807.

[34] GASPAROTTO L H S, BORISENKO N, BOCCHI N et al. In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide[J]. Physical Chemistry Chemical Physics, 2009, 11(47): 11140-11145.

[35] SARABIA F J, CLIMENT V, FELIU J M. Underpotential deposition of Nickel on platinum single crystal electrodes[J]. Journal of Electroanalytical Chemistry, 2018, 819(V): 391-400.

[36] BARD A J, FAULKNER L R, SWAIN E et al. Fundamentals and Applications[M]. John Wiley & Sons, Inc, 2001.

[37] SCHWEINER F, MAIN J, FELDMAIER M et al. Impact of the valence band structure of Cu2O on excitonic spectra[J]. Physical Review B, 2016, 93(19): 1-16.

 [38] XIONG L, HUANG S, YANG X et al. P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties[J]. Electrochimica Acta, 2011, 56(6): 2735-2739.

[39] KAZIMIERCZUK T, FRÖHLICH D, SCHEEL S et al. Giant Rydberg excitons in the copper oxide Cu2O[J]. Nature, 2014, 514(7522): 343-347.

[40] RAEBIGER H, LANY S, ZUNGER A. Origins of the p-type nature and cation deficiency in Cu2 O and related materials[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 76(4): 1-5.

[41] 舒云. Cu2O薄膜的电化学制备及其光电化学性能的研究[D]. 云南大学物理与天文学院,2019.

阅读延伸

展示全部  up